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Abstract

This thesis deals with aspects of the spatial and temporal variability of soil moisture in relation to atmospheric
conditions. It is first illustrated that the combination of seasonality in atmospheric forcing and non-linearity in
the relation between soil moisture and the losses from the soil moisture reservoir result in a bimodal temporal
distribution. Next, the impact of root water uptake on the coupled dynamics of soil moisture and evapotranspi-
ration is investigated by a dimensionless analytical model. Subsequently, observations of evapotranspiration are
used to study characteristic soil moisture response times under water-limited conditions for different biomes.
Typically, these values are in the order of 15–25 days. In order to investigate the accuracy with which areal
soil moisture can be estimated from a limited number of point-scale observations, rank stability analysis is
applied to different field- or catchment-scale soil moisture datasets. It is shown that temporal changes in the
spatial soil moisture distribution prevent perfect rank stability. Covariance analysis of Monte-Carlo simulations
reveals that these changes in spatial soil moisture variability are caused by spatially variable root water uptake
during drydrown, and drainage during (re)wetting. These simulations also reveal that the nonlinear relation
between soil moisture and evapotranpiration in combination with climate variability induces hysteresis (i.e.,
non-uniqueness) in the relation between mean soil moisture and its variability. A linear analytical model is
used to characterize space-time variability of surface soil moisture fields in response to minor rainfall events.
The results are in good agreement with observations made during a recent field experiment conducted under
very dry conditions.
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Voorwoord

Voor u ligt mijn proefschrift, het concrete resultaat van mijn promotie-onderzoek. Ondanks het feit dat er vele
jaren werk in dit boekje zitten, is het toch een relatief dun boekje geworden. Omgerekend komt dit overeen met
ongeveer één pagina inhoud per maand. Compact is niet per se makkelijker om te schrijven, en het gezegde
“schrijven is schrappen” is dan ook zeker opgegaan tijdens het schrijven van dit proefschrift. Ik ben me ervan
bewust dat het de leesbaarheid niet per se ten goede komt, zeker niet voor mensen die niet bekend zijn met de
terminologie van de landoppervlakte-hydrologie. Desalniettemin hoop ik toch dat u dit proefschrift met plezier
en interesse zult lezen.

In september 2002 begon ik aan mijn onderzoek, aanvankelijk onder begeleiding van Peter Troch, Eddy
Moors en Emiel van Loon. De grotere fysieke afstand tot Eddy bleek helaas al snel een belemmering te
zijn voor intensieve samenwerking. Emiel was in de opstartfase een belangrijke vraagbaak, maar hij verruilde
Wageningen al snel voor de UvA. Na de zomer van 2005, toen ik net halverwege mijn onderzoek gevorderd was,
verruilde Peter Wageningen voor het zonnige Tucson. Hoewel er regelmatig e-mail contact bleef, betekende dit
helaas het einde van de vaak uitgebreide en inspirerende discussies.

In de tussentijd was er een groeiende samenwerking met Remko Uijlenhoet op gang gekomen. Na het vertrek
van Peter nam Remko dan ook als vanzelfsprekend een belangrijk gedeelte van de dagelijkse begeleiding over.
De geringe afstand tot Remko’s werkplek heeft hier zeker een belangrijke rol in gespeeld. De samenwerking
met Remko heeft uiteindelijk ook geresulteerd in een gedeeld promotorschap. Dankzij een lang bezoek aan
Tucson in het voorjaar van 2007 was Peter toch nog nauw betrokken bij de afronding van mijn onderzoek.

Mede door (of dankzij) de eerder genoemde omstandigheden heb ik zelf richting kunnen en moeten geven
aan het onderzoek. Het ontbreken van een vast onderzoekskader had als gunstige bijkomstigheid dat ik kon
inspelen op recente publicaties. Zo verscheen in 2003 een paper van John Albertson en Nicola Montaldo in
Water Resources Research, dat de mathematische achtergrond beschreef van temporele veranderingen in de
ruimtelijke variatie van bodemvocht. Hoewel ik toen al bijna een jaar gevorderd was met mijn onderzoek, is dit
paper uiteindelijk een belangrijke inspiratiebron gebleken voor de laatste drie hoofdstukken van dit proefschrift.
Maar ook heb ik dankbaar gebruik gemaakt van de kans om te reageren op het paper van Paolo D’Odorico en
Amilcare Porporato dat in 2004 verscheen in de Proceedings of the National Academy of Sciences of the United
States of America.

In 2004 werden ikzelf en Hidde Leijnse door Peter betrokken in de organisatie van de tweede CAHMDA
workshop, die in oktober van dat jaar plaatshad in Princeton bij de groep van Eric Wood. Hoewel de organisatie
een forse hoeveelheid tijd kostte, was het een zeer leerzame ervaring. De LATEX kennis die ik heb opgedaan
met de opmaak van het book of abstracts is me bij dit proefschrift goed van pas gekomen. Ook ontmoette ik
Sonia Seneviratne tijdens CAHMDA. Dit resulteerde in een kort bezoek aan het ETH in Zürich in het najaar
van 2005, waar de basis werd gelegd voor een gezamenlijke publicatie.

In het najaar van 2006 kregen Ruud Hurkmans en ik de mogelijkheid om deel te nemen aan NAFE’06,
een veldexperiment in Australië dat werd georganiseerd door de groep van Jeff Walker aan de University of
Melbourne. Naast een prachtige ervaring leverde NAFE’06 ook een mooie dataset op, waarvan een gedeelte nog
in dit proefschrift verwerkt kon worden. Ik ben de Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO) erkentelijk voor de financiële steun aan onze deelname in de vorm van twee reisbeurzen. I also thank
all NAFE’06 participants for their efforts in collecting the soil moisture data, and Olivier Merlin and Rocco
Panciera for rapidly making the data available to me.

In this thesis I have used data from many sources, and I wouldn’t have been able to do this research using only
the publicly accessible ones. Several people readily provided me with their data, namely: François Hupet (now
at Baxter BioScience, Belgium), John Albertson (Duke University, USA), Mehdi Homaee (University of Tarbiat
Modarres, Iran), John Hunt (Landcare Research, New Zealand), Keith Loague (Stanford University, USA),
Dirk Schüttemeyer (German National Committee on Global Change Research), Anne Verhoef (University of
Reading, UK), Chris Williams (University of Maryland, USA), and Marita Voogt (KNMI). Especially Francois’
data turned out to be an important source of inspiration for several papers. Although our contact went mainly
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via e-mail, the collaboration was fruitful. Also, I thank my co-authors and the anonymous reviewers for their
efforts in correcting and improving the various papers.

Vooral mijn kamergenoten Emiel, later Shaakeel en nog weer later Hidde, heb ik regelmatig lastigvallen
met de meest uiteenlopende, vaak technische, vragen. Ik heb veel gehad aan jullie kennis en behulpzaamheid!
Patrick, bedankt voor al de levendige discussies en je hulp met PCRaster. Emiel, Hidde, Remko, Shaakeel en
Tessa: koffie was nooit zo goed als op de Nieuwlanden! Henri, bedankt voor je hulp bij het maken van de
omslag. Jascha en Hans, bedankt dat jullie als mijn paranimfen op willen treden! Dionne, Olivier, and Ruud:
we made a great team! I enjoyed being out with you in the field. If it wasn’t for the snakes and spiders, I could
still be out there sampling! Verder wil ik iedereen bedanken die ik hier nu vergeten ben, maar die, op wat voor
manier dan ook, toch heeft bijgedragen aan de totstandkoming van dit proefschrift.

Mijn lieve Moniek: het is eindelijk af! Bedankt voor al je steun en geduld. Nu is de beurt aan jou! Ik hoop
dat ik je kan helpen zoals je mij geholpen hebt!

Ryan Teuling

Zürich, september 2007.
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1. Prologue

1.1. About the cover

The cover picture was taken by the author on 13 November 2006, during the National Airborne Field Experi-
ment (NAFE’06, see Chap. 7) in New South Wales, Australia. The field is located in the Coleambally Irrigation
Area (CIA). The CIA is one of the largest irrigated land settlement schemes in Australia and was established
during the 1960’s. From 2001 onwards, the region suffered from serious drought conditions. In large parts of
New South Wales and the Murray Darling basin, the multi-year rainfall deficiencies were among the highest
ever recorded. For the Murray Darling basin, 2006 was the third driest year on record, and New South Wales
experienced its fifth warmest year on record for statewide averaged mean temperatures. As a result, farmers
were confronted with severe water restrictions being imposed, resulting in significant harvest reduction. While
summer droughts are an inherent part of natural climate variability, it is expected that both their frequency and
intensity will increase under global warming. This can have profound physical, ecological, social, and eco-
nomic consequences. The cover picture illustrates the central role of soil moisture in the human perception of
droughts: dry, crusted soils, covered with wilted, yellowish crops.

1.2. Problem outline

The hydrological or water cycle (Fig. 1.1) forms a key part of the global climate system. Water has several
unique properties that are of importance to climate, especially its high latent heat of fusion (3.34 105 J kg−1)
and latent heat of vaporization (2.50 106 J kg−1). Since vaporization involves the breakage of hydrogen bonds,
its latent heat is much larger than the latent heat of fusion. The large latent heat of vaporization consumes much
of the incoming solar radiation at the Earth’s surface wherever water is present. As a result, temperature cycles
are generally more pronounced in waterless regions (deserts) than in humid regions.

The hydrological cycle is most intense over the oceans. Despite the net water vapor flux from the oceans to
the continents, most of the continental precipitation originates from terrestrial evapotranspiration. Most of this
evapotranspiration takes place through plants’ stomata (Fig. 1.1), although evaporation from interception can
be significant (Dolman and Gregory, 1992; Savenije, 2004). Plant roots play a key role in the climate by their
ability to extract soil moisture from the whole soil profile. In this way, they prevent percolation of precipitation
to the groundwater. In fact, most (59%) of the precipitation that falls over the continents is returned to the
atmosphere through evapotranspiration. Despite its central place in the hydrological cycle, the soil moisture
storage constitutes only a very small part of the total water reserves on Earth (Fig. 1.1).

Plants rely on the availability of water for photosynthesis, and they adjust their stomatal resistance to water
transfer according to the availability of soil moisture. Since plants have evolved over millions of years, their
stomata are optimized to local climate (see Hetherington and Woodward, 2003, for a review). The adaptation
of vegetation to climate is most noticable in ecosystems where water is a limiting resource. For instance,
the woody cover in savannas and species distribution in tropical forests are known to be governed by water
availability (Sankaran et al., 2005; Engelbrecht et al., 2007). In the Amazon, evergreen forests have developed
deep roots to maintain green canopy and high evapotranspiration rates during the dry season (Nepstad et al.,
1994). In the Mojave desert, vegetation is adapted to interannual climate variability and rapidly adjusts its
productivity to the available rainfall (Scanlon et al., 2005). Huxman et al. (2004) report that different biomes
tend towards a constant rain use efficiency that is determined by the minimum yearly rainfall. This shows that
there exists a close link between soil moisture, transpiration, vegetation, and climate. Models should reproduce
this link correctly.

The development of numerical models of the global climate system (so-called Global Circulation Models,
GCMs), have enabled scientists to study the impact of land surface conditions and soil moisture on the global
climate. For example, it is known that rooting depth is one of the critical parameters in the climate system
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(Zeng et al., 1998). A small increase in rooting depth can potentially compensate increased temperatures due
to increased atmospheric CO2 levels (Milly, 1997). Soil moisture is not only directly affected by atmospheric
conditions (most directly through precipitation), it can in turn also affect these atmospheric conditions through
its control on the surface energy balance. The resulting positive feedback (i.e., lower rainfall leads to lower soil
moisture and evaporation, and lower evaporation to lower precipitation) can increase the duration and intensity
of climate extremes at sub-continental scales. Experiments with GCMs have succesfully isolated the effect of
this feedback on droughts (e.g., Hong and Kalnay, 2000; Schubert et al., 2004), heatwaves (e.g., Seneviratne
et al., 2006a), and floods (e.g., Pal and Eltahir, 2002). The strength of the feedback is most noteworthy in mid-
continental regions with transitional climate (Koster et al., 2004). The presence of groundwater might amplify
wet and dry anomalies at longer (interannual) timescales (Bierkens and van den Hurk, 2007).

Since soil moisture directly controls fluxes of water and energy at the land surface, it is an important variable
in most environmental (land surface) models (LSMs) such as those used for weather and climate prediction,
groundwater flow, rainfall-runoff, and crop growth. In order to simulate soil moisture, models need atmospheric
forcing, initial conditions, and parameter values at every spatial grid point. For forecasting, near-realtime
soil moisture fields are required as initial condition. Three problems associated with soil moisture modeling
have received considerable attention in the recent literature: the problem of parameter identification, spatial
representativeness, and initialization.

Firstly, models need calibration in order to make realistic predictions. For instance, calibrated soil param-
eters can significantly improve evapotranspiration estimates with respect to soil parameters derived from soil
maps by pedotransfer functions (Soet and Stricker, 2003; Gutmann and Small, 2007). As a result, the predictive
skill of uncalibrated LSMs is poor, and different LSMs can produce (very) different results (Soet et al., 2000).
Reduction of predictive uncertainty has been recognized as a key research challenge in the IAHS Prediction in
Ungauged Basins (PUB) initiative. One way of reducing this uncertainty is by developing robust parameteriza-
tions (i.e., having little sensitivity to parameter values). A more pragmatic solution is to use different models
in an ensemble mode, and assume that the ensemble mean is more realistic than any of the ensemble members
(e.g., Dirmeyer et al., 2006b). While the key water- and energy fluxes at a particular site are related to only
very few climate variables (Abramowitz, 2005), the number of (uncertain) parameters in LSMs has increased
dramatically over the past decades. In such underdetermined systems, different parameters sets can produce
similar results: a principle known in hydrology as equifinality (e.g., Schulz and Beven, 2003).

The second issue is that of spatial representativeness. Parameterizations are generally validated at the point-
scale, while LSMs are applied at grid sizes up to the regional scale. In this case, LSMs need to account for
the effects of small-scale heterogeneities affecting non-linear processes within their parameterizations, in order
to maintain correct grid-average fluxes by upscaling or so-called closure schemes (Kim and Stricker, 1996;
Kim et al., 1997; Giorgi and Avissar, 1997). For example, LSMs applied at the catchment scale need closure
schemes for highly variable and nonlinear processes that occur at smaller scales such as interception, infiltration
and root water uptake (see Fig. 1.2). The development of such closure schemes is complex (Regianni et al.,
1999; Montaldo and Albertson, 2003), and requires a thorough understanding of the small-scale heterogeneities
(Western et al., 2002).

A third problem is the current lack of soil moisture observations required for initialization. Soil moisture
observations can either be made in situ or by remote sensing (for reviews of methods see Schmugge et al.,
1980; Njoku and Entekhabi, 1996; Walker et al., 2004; Kerr, 2007). Each technique has its own spatial support
and uncertainty (noise), and is generally applied with different spatial extent and spacing. This so-called scale
triplet is illustrated in Fig. 1.3. Remote sensing techniques have the major advantage of their areal coverage, but
the penetration depth is limited and validation problematic. The upcoming Soil Moisture and Ocean Salinity
mission (SMOS, see Kerr et al., 2001) will deliver global soil moisture with a regional-scale support, but with a
sensing depth of only a few cm. In situ techniques can be applied to the whole profile, but their spatial support is
limited. Currently, there is no dedicated soil moisture satellite mission, and in situ soil moisture networks exist
only in few regions (e.g., Hollinger and Isard, 1994; Schneider et al., 2003). As an alternative to direct soil
moisture observations, soil moisture can be estimated indirectly from screen level observations of temperature
and/or humidity (Mahfouf , 1991; Calvet et al., 1998).
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Figure 1.1. Schematic representation of the global hydrological cycle (excluding Antarc-
tica) with the size of the different stores (bold, in km3) and fluxes (italic, in km3 y−1).
Numbers from Oki and Kanae (2006).

Figure 1.2. Ranges of spatial and temporal scales of some common processes in the
terrestrial water cycle. The grey area indicates the focus of this thesis. After Brutsaert
(2005).
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Figure 1.3. Scaling triplet. Modified after Western and Blöschl (1999).

1.3. This thesis

This thesis aims at linking spatial and temporal variations in soil moisture to evapotranspiration and climate.
It focusses at the first two of the problems mentioned in Section 1.2. Figure 1.2 indicates the position of the
principal processes in this thesis and their associated temporal and spatial scales relative to other processes
in the hydrological cycle. The spatial scales range from the point to the regional scale, and the temporal
scales from days to months. Figure 1.3 illustrates the key problem in this thesis: if a certain combination of
processes results in a set of soil moisture states, what can we tell about the resulting probability distribution? Or,
alternatively, if only changes in the distribution are known, what do these changes tell us about the underlying
processes? Throughout the thesis there are two central principles. The first principle is that of conservation of
mass. Although this may seem trivial, there are many studies on land surface hydrology were this principle is
simply not considered or even violated. In this thesis the water balance will be applied throughout. A second
principle that is used throughout this thesis is that of Occam’s razor. This principle (or philosophy) can be
expressed as follows: “all things being equal, the simplest solution tends to be the best one”. Occam’s razor is
applied by adapting the model complexity to the research question. In addition to applying these two principles,
the thesis focusses on the dry soil moisture range, in which evapotranspiration fluxes are strongly controlled by
the soil moisture state.

The first part of this thesis, namely Chapters 2–4, deals with temporal dynamics of soil moisture at the
point- to field-scale. Here, spatial variability is not considered explicitely, although vertical distribution of soil
moisture is considered in Chapter 3. All three chapters deal with wet-dry transitions in climates that have
a strong seasonality in their rainfall. In Chapter 2 the impact of non-linearities in the relation between soil
moisture and water fluxes at the land surface on the temporal distribution of soil moisture is investigated by
means of stochastic simulation. Some theoretical aspects of how plant roots control evapotranspiration is further
investigated analytically in Chapter 3. In contrast to the more qualitative approach in Chapter 3, Chapter 4
investigates the strength of the relation between soil moisture and evapotranspiration from evapotranspiration
observations.

The second part of the thesis, namely Chapters 5–8, deals with spatial variability (and its dynamics) of
point-scale soil moisture at the field- or catchment-scale. The dynamics of spatial soil moisture fields are
investigated by means of statistical analysis (Chapter 5), stochastic simulation (Chapters 6 and 8), and low-
dimensional analytical models (Chapter 7). Chapter 5 deals with the representativeness of point-scale soil
moisture observations to the spatial mean soil moisture. Chapters 6 and 8 both focus on the relation between
spatial mean root zone soil moisture and its variability. While Chapter 6 investigates why this relation is
different for three different datasets, Chapter 8 explores the impact of climate variability on this relation for a
single site. In Chapter 7, the focus is on surface rather than root zone soil moisture. Here, the dynamics of and
the relation between spatial mean soil moisture at the field scale and its variability are investigated, as well as
the sensitivity of the temporal soil moisture distribution to changes in precipitation characteristics.
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2. On bimodality in warm season soil moisture
observations∗

It has recently been suggested that the bimodality in warm season soil moisture obser-
vations in Illinois provides evidence for a soil moisture-precipitation feedback. Other
studies however provide little evidence for a strong feedback in this region. Here
we show that seasonality in the meteorological conditions in combination with the
non-linearity of the soil moisture response alone can induce this bimodality. The
existence of preferred wet and dry soil moisture states may have implications for
the understanding and modeling of soil moisture dynamics in mid-latitude regions.

2.1. Introduction

In continental climates, a significant but varying fraction of warm season precipitation can originate from
recycled local evaporation (e.g., Brubaker et al., 1993; Savenije, 1995). It has been argued that anomalous soil
moisture conditions, through their effects on evapotranspiration and subsequent precipitation, might sustain
themselves causing periods of enhanced floods and droughts. Although rainfall formation is a complex process
and the effect of soil moisture is not necessarily positive at all spatial scales (e.g., Giorgi et al., 1996; Ek and
Holtslag, 2004; Taylor and Ellis, 2006), positive feedbacks have indeed been reported in several Atmospheric
General Circulation Model (AGCM) studies (Shukla and Mintz, 1982; Oglesby and Erickson, 1989; Beljaars
et al., 1996; Bosilovich and Sun, 1999; Hong and Kalnay, 2000; Koster et al., 2004).

Since Illinois (Fig. 2.1) is one of the few continental regions where long-term soil moisture as well as pre-
cipitation records are available, many studies focus on this region. Although there is consensus about the
significance of the soil moisture-precipitation feedback over the Great Plains region (Findell and Eltahir, 2003;
Koster et al., 2003, 2004), there is an ongoing debate about whether the feedback controls soil moisture and
precipitation dynamics in Illinois (e.g., Findell and Eltahir, 1997; Salvucci et al., 2002; D’Odorico and Por-
porato, 2004). Findell and Eltahir (2003) showed that soil moisture can indeed influence the triggering of
deep convection in this region, but Salvucci et al. (2002) were unable to detect a causal relation between soil
moisture and subsequent precipitation in observations.

Rodríguez-Iturbe et al. (1991) showed that precipitation recycling over large continental regions can lead
to two modes in the steady-state soil moisture probability density function (pdf). Recently, Kochendorfer and
Ramírez (2005) concluded that this bimodality does not occur when conditions typical to the central United
States (including Illinois) are considered. D’Odorico and Porporato (2004) showed that bimodality in the
steady-state pdf can occur in Illinois when causality between observed soil moisture and subsequent precipita-
tion is assumed. Moreover they showed that a majority of the soil moisture stations in Illinois show bimodality
in their warm season (May–September) soil moisture pdf, which they argued was experimental evidence of
the existence of such a feedback. Here we investigate the origin of the bimodality in the Illinois soil moisture
observations. We argue that the bimodality is not indicative for a strong soil moisture-precipitation feedback,
but can be explained by the existence of soil moisture states that show little sensitivity to changes in forcing.

2.2. Effects of seasonality

D’Odorico and Porporato (2004, pp. 8850) used “the fact that in this region the late growing season can be
considered to be practically under statistically steady conditions” to support their explanation for the observed

∗This chapter is an edited version of: Teuling, A. J., R. Uijlenhoet, and P. A. Troch (2005), On bimodality in warm season soil moisture
observations, Geophys. Res. Lett., 32(5), L05404, doi:10.1029/2005GL023223. Copyright 2005 American Geophysical Union.
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Figure 2.1. Map of Illinois (USA) showing the location of the relevant WARM sites and
the selected ERA40 grid cell. The Great Plains, which have been reported to exhibit the
strongest potential for soil moisture-precipitation feedback (Koster et al., 2003, 2004),
are shown in grey.

bimodality. While the assumption of stationary soil moisture conditions might be valid at a daily timescale, as
in Salvucci (2001), it loses its validity at longer (sub)seasonal time scales. Figures 2.2A–C show the results
of an analysis of meteorological data from the Illinois State Water Survey Water and Atmospheric Resources
Monitoring Program (WARM, data available from www.sws.uiuc.edu/warm), averaged over the different sta-
tions. Precipitation (through storm frequency λ and depth α) as well as potential evapotranspiration (Ep) show
a clear seasonal trend extending to well beyond the warm season. Moreover, as will be discussed later on, this
results in a transition from a net precipitation surplus in May to a deficit in August.

Both leaf area index (ξ ) and soil moisture (θ ) respond to the seasonality in meteorological forcing. Leaf
area index typically shows a strong seasonal cycle on the North American continent (e.g., van den Hurk et al.,
2003), with a peak in August. As an illustration, Fig. 2.2C shows measurements made on a grassland site
in Kansas in 2001 and 2002 (Gower, 2000–2004). Illinois soil moisture data are described by Hollinger and
Isard (1994), and are available through the Global Soil Moisture Data Bank (Robock et al., 2000). Figure 2.2D
reveals that the assumption of stationarity is not valid for soil moisture on seasonal timescales: the persistent
dry-down during summer covers nearly the full mean soil moisture range (see also Findell and Eltahir, 1997,
their Fig. 2).

We study the effect of seasonality on the warm season soil moisture pdf by applying a modified version of
the model used by Laio et al. (2001) and D’Odorico and Porporato (2004). The stochastic model solves the
water balance at a daily time scale:

dθ
dt

=
1
L

[ϕ(θ , t)−χ(θ)] , (2.1)

where θ is the volumetric soil moisture content of the active soil depth L, ϕ the infiltration, and χ is the loss
function. Infiltration equals precipitation P that is not intercepted, or the remaining storage capacity L(θs−θ),
whichever is smaller. θs is the porosity of the soil. The size of the interception reservoir is taken proportional to
ξ , with a proportionality constant of 0.2 mm per unit of ξ . Daily rainfall occurrence is modeled as a Bernoulli
process with occurence probability λ (t)dt (dt = 1 d), and depth drawn from an exponential distribution with
mean α(t). A key difference with previous work is that we allow for seasonality in λ and α , assuming θ to be
driven by meteorological forcing rather than θ to be the main driver of this forcing (as is explicitely assumed
in D’Odorico and Porporato, 2004).
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Figure 2.2. Climatology of Illinois. Error bars denote interannual variability (standard
deviation) for the years 1989–2004 (A–C) or 1981–2004 (D). Forcing was binned into
17 nine-day periods spanning the period May–September. Solid lines are second-order
polynomial regressions for the warm season, and the dashed line is the sine curve for ξ .

The loss function χ(θ) combines daily losses due to drainage and evapotranspiration (App. A):

χ(θ) =





Ew
θ−θh
θw−θh

, θh < θ ≤ θw

Ew +(Emax−Ew) θ−θw
θc−θw

, θw < θ ≤ θc

Emax + ks

(
θ
θs

)2b+3
, θc < θ ≤ θs,

(2.2)

where Ew is the residual evaporation at wilting point θw, θh the hygroscopic point, θc the critical moisture
content marking the transition between soil- and atmosphere-controlled evapotranspiration, Emax the maximum
evapotranspiration rate of the vegetation, ks the saturated hydraulic conductivity, and b is a pore size distribution
parameter. We differ from Laio et al. (2001) by incorporating the effect of varying ξ and Ep on Emax as (e.g.,
Al-Kaisi et al., 1989):

Emax =
(

1− e−cξ
)

Ep, (2.3)

where c is an extinction coefficient for global radiation (0.4 for grass). Other parameters are adopted from
Laio et al. (2001) and D’Odorico and Porporato (2004): ks = 20 mm d−1, θh = 0.06, θw = 0.08, θc = 0.24,
θs = 0.45, b = 5.39, L = 0.5 m, and Ew = 0.2 mm d−1. A comparison of (2.2) with independent estimates of
χ(θ) for Illinois confirms the non-linear shape of the loss function (Fig. 2.3A). Field capacity θ f in Fig. 2.3 is
defined as the point where drainage losses are 10% of Emax (Laio et al., 2001).

7



SOIL MOISTURE BIMODALITY

In order to allow for direct comparison with observations, we evaluate (2.1)–(2.3) over the period May–
September using the regressions in Figs. 2.2A–D. As initial condition we assume stationary conditions on
1 May. Since an analytical solution of this problem is not easy to obtain, Fig. 2.3A shows the soil moisture pdf
p(θ) based on Monte Carlo simulations of the model (50,000 seasonal realizations). The pdf shows a distinct
bimodality. This bimodality is also apparent, although less pronounced, in the shorter period June–August (not
shown). The pdf compares well to observations from Peoria, which according to D’Odorico and Porporato
(2004) have the strongest bimodal tendency. In the following, we argue that the origin of this bimodality differs
from their interpretation.

2.3. Characterizing wet and dry modes

A visual comparison between Figs. 2.3A and B reveals that the bimodal pdf for the period May–September is a
near-perfect mixture between the steady-state solutions of p(θ) for wet (May) and dry (August) regimes. This
is confirmed by the observations from Peoria for the individual wet and dry months. These show no bimodality
(Fig. 2.3B), but follow the skewness predicted by the steady-state solutions without feedback. This conflicts
with the view of D’Odorico and Porporato (2004, pp. 8850) that “summer soil moisture dynamics evolve toward
either a dry or a wet state in which the system may remain locked for the rest of the warm season”. Instead,
soil moisture is in a wet state at the beginning of the warm season, and switches to a dry state whenever actual
evaporation starts to exceed the precipitation. This switch generally takes place in the period June–July.

This can be explained as follows. Since, in climatic average terms, P 6= Emax, no steady-state pdf exists with
a mode between θc and θ f (since dχ(θ)/dθ ≈ 0). In this region, θ is always in transition. Outside this region,
the inequality between P and Emax can be balanced by either increased drainage caused by the strong non-linear
dependence of the hydraulic conductivity on θ (in case P > Emax) or soil moisture limitation on transpiration
(P < Emax). Hence these regions will act as “attractors” in the soil moisture probability density space. The wet
“attractor” is often referred to as field capacity.

The transition between wet and dry modes can occur very rapidly. In the absence of rainfall, the time span
of this transition is the time needed for the soil to dry from θ f to θc. With the parameters of Fig. 2.3A, this
yields a value of∼20 d. The occurrence of bimodality is controlled by the ratio (Ψ) between the climatological
average maximum precipitation deficit in the course of the warm season DP (relative to Emax) and the amount
of water between θ f and θc that is accessible for transpiration (through L):

Ψ =
DP

L(θ f −θc)
. (2.4)

In climates with precipitation surplus in winter, no bimodality occurs if Ψ < 1. Figure 2.4 shows the effect
of varying Ψ on p(θ), obtained by increasing L. The resulting pdf’s have a shape similar to observations from
Champaign, one of the stations that does not show bimodal behavior. This confirms that local variations in Ψ
through either climate, soil, or vegetation properties control the variations in soil moisture dynamics in Illinois.
Since the shape of χ(θ) in Fig. 2.3A is not unique for Illinois (nor is the climate), similar dynamics are likely
to occur in other mid-latitude regions. A rapid transition between wet and dry states has also been observed in
studies of spatial soil moisture patterns in a small Australian catchment (Grayson et al., 1997).

To investigate if coupled land-atmosphere models are capable of reproducing the observed soil moisture
dynamics, we study the ERA40 reanalysis soil moisture data (obtained from the ECMWF data server) for
the warm seasons of the years 1981–2002 (Fig. 2.1). Whereas observations tend to be bimodally distributed,
the ERA40 data show one distinct peak and less dynamical range (Fig. 2.5). Since we concluded that the
bimodality is related to the shape of χ(θ), we investigate to what extent this shape controls the soil moisture
pdf by repeating our model runs with soil parameters and the simplified loss function of the ERA40 land
surface scheme (Fig. 2.5). This (daily average) function was derived from the model equations (see van den
Hurk et al., 2000) under assumptions of instantaneous vertical soil moisture redistribution, full vegetation
cover, stomatal conductance only reduced by soil moisture, and equal aerodynamic and minimum surface
resistance. The results, although showing a slightly higher variability, show similar dynamics as the ERA40
data and no bimodality. Although other factors contribute to the damped soil moisture dynamics in ERA40
(e.g., Seneviratne et al., 2004), this shows that the simulated soil moisture dynamics are strongly controlled by
the parameterization of the soil moisture losses.
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Figure 2.3. (A) Simulated soil moisture pdf (solid line) and observations (top 0.5 m)
from Peoria (1981–2004, grey), both for the period May–September. The dashed line is
χ(θ), with Emax = 3 mm d−1, with estimates of χ(θ) by Salvucci (2001) for the period
June–August. (B) Steady-state pdf’s from Laio et al. (2001) with parameters taken from
Fig. 2.2 on 31 May (P > Emax) and 31 August (P < Emax), and observations (top 0.5 m)
from Peoria for May and August. Histogram bin widths are adjusted to the number of
observations (Scott, 1979).

2.4. Discussion and Conclusions

In this chapter we show that soil moisture bimodality cannot be considered as conclusive evidence for the
existence of a soil moisture-precipitation feedback, since no feedback is necessary to explain the existence
of the wet and dry modes. However, our results do not exclude the possibility that such a feedback exists
in Illinois. Recent work suggests that feedback-induced bimodality might exist in other regions (Lee and
Hornberger, 2006). Although many processes (including soil moisture-precipitation feedback) can lead to
bimodal soil moisture distributions, we think the process described here dominates possible other processes in
their effect on soil moisture dynamics in Illinois. The conditions that generate the bimodality are not limited
to Illinois nor to regions were a land-atmosphere feedback may exist. Not surprisingly, similar bimodal soil
moisture dynamics have been reported for other regions (Miller et al., 2007). Understanding these dynamics
can aid the development, parameterization, and validation of land surface models.
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Figure 2.4. Effect of active soil depth on the (smoothed) soil moisture pdf for the period
May–September, and observations (top 0.5 m) from Champaign for the same period in
the years 1984–2004 (grey).

Figure 2.5. Simulated and ERA40 soil moisture pdf for the period May–September, and
simplified χ(θ) (dashed line) with Emax = 3 mm d−1.
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3. Impact of plant water uptake strategy on soil
moisture and evapotranspiration dynamics during
drydown∗

Experiments have shown that plants can compensate for water stress in the upper, more
densely rooted, soil layers by increasing the water uptake from deeper layers. By
adapting root water uptake to water availability, plants are able to extend the period
of unstressed transpiration. This strategy conflicts with the approach in many land sur-
face schemes, where plant water uptake is treated as a static process. Here we derive
expressions for the typical drydown trajectories of evapotranspiration and soil mois-
ture for both strategies. We show that the maximum difference in evapotranspiration
between the two strategies during drydown can exceed 50%. This in turn leads to
a difference in root zone soil moisture of up to 25%. The results stress the impor-
tance of incorporating realistic root water uptake concepts in land surface schemes.

3.1. Introduction

Climate model simulations are sensitive to root water uptake parameters in their land surface schemes (Des-
borough, 1997; Milly, 1997; Kleidon and Heimann, 1998; Zeng et al., 1998). A correct parameterization of
the root water uptake (hereafter RWU) process is essential to predict the long-term (multiple day to monthly)
evolution of energy flux partitioning at the land surface. At seasonal timescales, perennial vegetation is known
to adapt its root pattern to the availability of soil moisture (Nepstad et al., 1994; Wan et al., 2002). At much
shorter timescales (multiple days to weeks), there is also evidence that (non-drought adapted) annual vegetation
has strategies to cope with water shortage in (the upper) part of the soil. This often results in water extraction
from deeper layers at rates much higher than would be expected on the basis of the root density (Sharp and
Davies, 1985; Green and Clothier, 1995). By doing so, plants are able to delay loss of turgor, prevent stomatal
closure, and maintain a high rate of photosynthesis. Rather than by a complete adjustment of the root density
profile, plants adapt to drought by rapidly developing fine roots (Coelho and Or, 1999), or by increasing the
activity and efficiency of deep roots (Sharp and Davies, 1985). Deep roots can be responsible for the bulk of
the water uptake (Lai and Katul, 2000). Hydraulic lift of water via roots to drier parts of the soil may also affect
local extraction rates (Jackson et al., 2000).

Several algorithms have been developed that can compensate for water stress in part of the root zone by
allowing increased uptake from other parts (Hoogland et al., 1981; Jarvis, 1989; Adiku et al., 2000; Li et al.,
2001). These algorithms allow for a longer period of unstressed transpiration, without altering the rooting depth
or the available soil moisture. Here we distinguish two possible RWU strategies:

• A Static strategy (hereafter referred to as S). Here, local RWU is driven by atmospheric demand and local
soil moisture conditions only.

• An Adaptive strategy (hereafter referred to as A). Here, local RWU also depends on root zone average
soil moisture conditions.

Next, we investigate the potential impact of the RWU strategy on the coupled dynamics of soil moisture and
evaporation during drydown for the simplified case where root water uptake dominates other flow mechanisms.

∗This chapter is an edited version of: Teuling, A. J., R. Uijlenhoet, F. Hupet, and P. A. Troch (2006), Impact of plant
water uptake strategy on soil moisture and evapotranspiration dynamics during drydown, Geophys. Res. Lett., 33(3), L03401,
doi:10.1029/2005GL025019. Copyright 2006 American Geophysical Union.
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Figure 3.1. Root water uptake (S) in an experimental field in Louvain-la-Neuve, Bel-
gium. (A) Observed. (B) Model difference ∆S between the algorithm of Jarvis (1989)
and S = Emβ (θ)p∗r (z), using Em = 4 mm d−1, λ = 3 m−1, θw = 0.16, θc = 0.22,
θ0 = 0.35, and a critical value of the weighted stress index of 0.2.

3.2. A field example

Figure 3.1A shows the RWU as derived from successive soil moisture measurements during periods without
significant rainfall made in a field cropped with maize (Zea mays L.) in Louvain-la-Neuve (Belgium) during
the 2003 European heat wave (Hupet and Vanclooster, 2005). During the initial stage of drying (June), the
higher RWU in the upper part of the profile mimics the exponential root density profile. During the second
stage (mid July), the bulk of the RWU shifted downwards due to drying of the topsoil. Moreover, the rate of
water uptake at these depths was fourfold that of the previous period, indicating a transition of RWU from root
distribution-controlled towards water availability-controlled (Green and Clothier, 1995). In August the uptake
at all measured depths was low.

To illustrate the effect of RWU parameterization on the simulation of similar events, Fig. 3.1B shows the
difference in RWU between a numerical evaluation of the Jarvis (1989) algorithm with stress compensation
(strategy A) and without compensation (strategy S). The parameters were chosen to match the conditions at the
site and vertical flow was neglected. Initially, both models give identical results. However, large differences
occur for t > 25 d when reduced uptake in the upper part of the soil for strategy S is compensated by higher
uptake rates at larger depths for strategy A. Interestingly, both the depth and timing of these differences are
similar to the increased uptake in Fig. 3.1A. Later, the differences switch sign, but are of smaller magnitude.
This example shows that models based on strategy S might fail to capture the actual RWU dynamics. The
timescales where the differences are large are highly relevant to drought forecasting.

3.3. Modeling root water uptake

The water budget in the root zone is described by:

∂θ
∂ t

=−∂q
∂ z
−S (3.1)

where θ is the volumetric soil moisture content, z a vertical coordinate (positive downwards), q the vertical
moisture flux, and S a sink term representing RWU. Land surface modelers often adopt strategy S and assume
that RWU is proportional to a maximum (unstressed) evapotranspiration rate Em, the root density distribution
pr, and a water stress factor β (Feddes et al., 2001). For many plants, root density is highest near the land surface
and decays exponentially with depth (Gerwitz and Page, 1974). For practical reasons we use the apparent root
density distribution p∗r (z) defined over the effective rooting depth L:

p∗r (z) = λ ′e−λ z, 0≤ z≤ L (3.2)
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where λ is the inverse of the e-folding depth of the root density, and λ ′ = λ/(1−e−λL) such that
∫ L

0 p∗r (z)dz = 1.
We assume the e-folding depth of the root density and the effective rooting depth to be related, i.e., L = c/λ . If
L is taken as the depth in (3.2) above which 95% of the roots are found (e.g., Schenk and Jackson, 2002), then
c≈ 3. Water stress can be modeled as a piecewise linear function of θ :

β = β (θ) =





0, θ ≤ θw
θ−θw
θc−θw

, θw < θ ≤ θc

1, θc < θ ≤ θs

(3.3)

where θs is the moisture content at saturation, θc the critical moisture level, and θw the wilting point. When
∂q/∂ z << S (as is typical under dry conditions), the local soil moisture decay can be obtained by solving
∂θ(z, t)/∂ t =−Emβ (θ)p∗r (z). Starting from a (uniform) initial soil moisture content θ0 at t = 0 with θ0 > θc,
this yields the following expression for θ(z, t) at a daily timescale:

θ ′(z, t) =

{
θ ′0−λ ′e−λ zEmt, 0≤ t < tc(z)
θ ′c exp

(
θ ′0−θ ′c

θ ′c
− λ ′ exp(−λ z)Emt

θ ′c

)
, t ≥ tc(z)

(3.4)

where tc(z) relates the time tc and corresponding depth zc of the first reduction of S (θ ′(z, t) = θc):

tc(z) =
θ ′0−θ ′c

Emλ ′ exp(−λ z)
⇔ zc(t) =

1
λ

ln
(

Emλ ′t
θ ′0−θ ′c

)
(3.5)

and θ ′ denotes the transformed variable θ ′ = θ −θw.
For strategy A algorithms, an expression for θ ′(z, t) will also depend on the co-evolution of the root zone

averaged soil moisture θ(t) (Jarvis, 1989). Since our interest is in the total (depth integrated) RWU rather than
θ ′(z, t), we assume that the total RWU response for strategy A algorithms is similar to (3.3) evaluated directly
with θ , i.e., with stress β (θ). The validity of this assumption increases with the plants ability to compensate
for stress (e.g., Guswa et al., 2002). Since the onset of reduced RWU occurs at min[tc(z)] or at max[p∗r (z)], it
can be seen from (3.5) that strategy A (single reservoir with effective uniform pr) tends to maximize tc. In this
way, the onset of water stress is postponed, but at the risk of more severe stress at a later stage.

3.4. Evapotranspiration decay

The total RWU for strategy S is obtained by integrating S(z, t) over the profile (denoted by Ŝ), while accounting
for vertical differences in soil moisture reduction:

ŜS(t) =





λ ′Em
∫ L

0 e−λ zdz = Em, 0≤ t < tc(0)
λ ′Em

∫ zc
0

θ ′(z,t)
θ ′c

e−λ zdz+λ ′Em
∫ L

zc
e−λ zdz, tc(0)≤ t < tc(L)

λ ′Em
∫ L

0
θ ′(z,t)

θ ′c
e−λ zdz, t ≥ tc(L)

(3.6)

where zc(t) is given by (3.5). Integration of (3.6) with substitution of zc(t) and (3.4), and rearranging of the
different terms yields (App. B):

σS(τ) =





1, 0≤ τ < 1− f
b

1
τ − f

τ exp
(

1− f
f − bτ

f

)
−be−c, 1− f

b ≤ τ < 1− f
be−c

f
τ exp

(
1− f

f

)[
exp

(
−bτ

f e−c
)
− exp

(
−bτ

f

)]
, τ ≥ 1− f

be−c

(3.7)

where the dimensionless variables σ = Ŝ/Em, f = θ ′c/θ ′0, b = λ ′/λ , and τ = λEmt/θ ′0 have been introduced
for convenience. If θ0 ≤ θc (or f ≥ 1), the solution reduces to:

σS(τ) =
1
τ

[
exp

(
−bτ

f
e−c

)
− exp

(
−bτ

f

)]
. (3.8)
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For strategy A, the time to first reduction on RWU becomes: tc = L(θ ′0−θ ′c)/Em, or τc = c−c f . By using θ
rather than θ in (3.3), the time evolution of σA can be written as:

σA(τ) =

{
1, 0≤ τ < c− c f

exp
(

1− f
f − τ

c f

)
, τ ≥ c− c f .

(3.9)

We define the relative difference ∆σ at time τ = τ∗ between strategy A and S as:

∆σ |τ=τ∗ = σA(τ∗)−σS(τ∗). (3.10)

The maximum difference max(|∆σ |) occurs at the onset of reduced uptake for A. With the values used in
Fig. 3.1B, this corresponds to t ≈ 33 d. The difference ∆σ |τ=c−c f can be evaluated by using σA = 1 and
inserting τ = c− c f in (3.7). For Fig. 3.1B this yields max(|∆σ |)≈ 46%.

Values for f depend on soil, climate, vegetation, and/or initial conditions, but are typically in the range of
0.3–0.6. In Fig. 3.2A, ∆σ(τ) is evaluated for different f . Strategy A initially leads to considerably higher
evaporation rates than strategy S, with a maximum difference of over 50% for low f . During later stages
of drydown the difference is opposite but much smaller in magnitude (see also Fig. 3.2B). The maximum
difference is strongly dependent on f . For f ≥ 1, this difference (∆σ |τ=c−c f ) reduces to less than 10%.

3.5. Soil moisture decay

The evolution of soil moisture averaged over a layer of thickness L and scaled by θ ′0, i.e., ω = θ ′/θ ′0, can be
derived from (3.4) by separating between non-, partly-, and fully reduced RWU trajectories similar to (3.6). For
strategy S this yields (App. C):

ωS(τ) =





1− τ
c , 0≤ τ < 1− f

b

1+ bτ
c e−c + 1

c ln
(

1− f
bτ

)
+ f−1

c + f
c exp

(
1− f

f

)[
E1

(
1− f

f

)
−E1

(
bτ
f

)]
, 1− f

b ≤ τ < 1− f
be−c

f
c exp

(
1− f

f

)[
E1

(
bτ
f e−c

)
−E1

(
bτ
f

)]
, τ ≥ 1− f

be−c

(3.11)

where E1 is related to the exponential integral Ei(x): E1(x) = −Ei(−x) (App. C). For θ0 ≤ θc the solution
reduces to:

ωS(τ) =
1
c

[
E1

(
bτ
f

e−c
)
−E1

(
bτ
f

)]
. (3.12)

Similarly, the normalized soil moisture evolution for strategy A for θ0 > θc is given by:

ωA(τ) =

{
1− τ

c , 0≤ τ < c− c f

f exp
(

1− f
f − τ

c f

)
, τ ≥ c− c f

(3.13)

which is similar to (3.4). We define ∆ω as the difference in transformed and normalized soil moisture between
strategy A and S:

∆ω|τ=τ∗ = ωA(τ∗)−ωS(τ∗). (3.14)

Evaluation of ∆ω(τ) in Fig. 3.2B shows that strategy A systematically leads to lower values of the available
root zone soil moisture during drydown when compared to strategy S. This is caused by a rapid reduction of
ŜS and associated lower dθ S/dt. The maximum difference for low values of f is in the order of 25%. Since
soil moisture reflects the effect of preceding RWU, the maximum difference in ∆ω lags behind the maximum
difference in ∆σ . With the values used in Fig. 3.1B, the maximum ∆ω occurs at t ≈ 53 d. These timescales are
especially relevant in the context of seasonal forecasting. Since for both strategies soil moisture is integrated
over the same layer, ∆ω = 0 for τ → ∞. Although the maximum of ∆σ |τ=τ∗ is strongly reduced for large f ,
this reduction is less pronounced in the integrated effect on ∆ω|τ=τ∗ . Here the maximum absolute difference
only shows a slight reduction for high f .
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Figure 3.2. Relative impact of uptake strategy on (A) evaporative flux σ and (B) soil
moisture ω as a function of normalized time τ = λEmt/θ ′0, for different f .

Figure 3.3. Scaled relations between root water uptake and root zone average soil mois-
ture for static (S) and adaptive (A) RWU and different values of f during drydown. Inset:
lysimeter observations made by Homaee et al. (2002) on alfalfa (Medicago Sativa L.)
with L = 0.6 m.
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Figure 3.4. Relation between daily σ and ω for strategy S ( f = 0.5) for a Richards’
equation-based model (dots, Em = 4 mm d−1, λ = 3 m−1), and equations (3.7) and (3.11)
without vertical flow (curves). (A) Coarse, (B) Medium, and (C) Fine soil.

3.6. Root zone aggregation

The uptake strategy also determines the relation between soil moisture and evaporation aggregated over the
root zone. Figure 3.3 shows the drydown trajectories plotted in the ω,σ -domain for different f (0.3–0.6). The
curves for strategy S reveal little sensitivity to f . For small f , the difference in evaporative flux between the two
strategies at a given value of ω , ∆σ |ω=ω∗ , can exceed ∆σ |τ=τ∗ . The difference is largest for θ = θc (ω = f ).
∆σ |ω= f easily exceeds 50% for low f . Figure 3.3 shows that even when reliable estimates of root zone soil
moisture are available, estimates of actual evapotranspiration can be highly uncertain due to a wrong RWU
conceptualization, and vice versa. Some theoretical aspects of the aggregated ω,σ -relation are discussed by
Guswa et al. (2002) and Metselaar and de Jong van Lier (2007). The inset in Fig. 3.3 shows an example of the
observed relation between ω and σ (Homaee et al., 2002). The piecewise linear behavior ( f ≈ 0.5) is typical
for many other similar experiments. Since the curves serve as an upper envelope for the measurements, they
are best characterized by strategy A (see also Fig. 3.1). Only few points fall below the curves for strategy S.

To test whether our results are dependent on the assumption of no vertical moisture transport, we performed
drydown simulations with a Richards’ equation based model with RWU according to strategy S (by definition,
the results for strategy A are trivial). θ0 was set as the average soil moisture after 3 days of free drainage
starting from saturation. Figure 3.4 shows that for typical coarse and fine soils the results closely match the
curve without vertical flow. For medium textured soils, redistribution has a compensating effect on vertical
differences in RWU, so that maximum RWU can be sustained at lower θ . The results will converge towards
our analytical model for lower θ0 (through its strong nonlinear effect on conductivity) or λ (through smaller
gradients). Also the occurrence of rainfall events will influence our results for strategy S by their influence on
the vertical soil moisture distribution. The associated hysteresis effects that arise from partial rewetting of the
soil profile are discussed by Guswa (2005).

3.7. Discussion and Conclusions

In this paper we show that different RWU strategies can lead to large differences in the temporal evolution of
evapotranspiration and soil moisture during drydown, even when the available soil moisture is left unaltered.
We find that, in absence of vertical flow, these differences can be as high as 50% for evaporation and 25%
for soil moisture. The compensating effect of vertical flow in the soil profile depends on several factors, but
is likely to be minor for most realistic conditions. We find that even for a relatively high initial soil moisture
content, the assumption of no vertical flow is reasonable for coarse and fine soils. Our results suggest that land
surface schemes with a realistic (static) root distribution but no stress compensation underestimate the actual
RWU in water-limited conditions. The timescales at which the largest differences occur (multiple weeks) are
highly relevant for drought forecasting.

16



4. Observed timescales of evapotranspiration
response to soil moisture∗

The sensitivity of evapotranspiration (ET ) to soil moisture storage plays an important
role in the land-atmosphere system. Yet little is known about its magnitude, or its de-
pendence on vegetation, soil, and/or climate characteristics. Here we relate the sen-
sitivity to the timescale of ET decay in absence of rainfall, and show that it can thus
be derived from time series of ET alone. We analyze ET observations from 15 veg-
etated sites covering a range of climate conditions, yielding timescales of 15–35 days.
Longer timescales (weaker ET sensitivity) are found in regions with seasonal droughts,
or at sites with woody vegetation. We compare observed values with output of differ-
ent land surface models (LSMs) from the Second Global Soil Wetness Project, revealing
large inter-model differences and significant differences with observations. Our method-
ology can lead to improved representation of soil moisture effects on ET in LSMs.

4.1. Introduction

Plants play a central role in the global water and energy cycles by regulating the partitioning of energy fluxes
at the land surface in response to the soil moisture availability in the root zone and atmospheric conditions.
Soil water dynamics in the root zone is dominated by rapid infiltration and subsequent vertical redistribution
following rainfall, in contrast to slow drydown due to water uptake by roots for evapotranspiration (ET ) during
interstorm periods. Parameterization of the latter process is complicated by the adaptive behavior of plant water
uptake (see Chap. 3). Key parameters and states (i.e., root distribution, soil moisture) are difficult to measure at
the appropriate scale, and they can show large spatial and temporal variability.

The sensitivity of ET to soil moisture is a central parameter within the coupled land-atmosphere system.
Several studies with Global and Regional Climate Models (GCMs, RCMs) suggest that it might influence low
frequency atmospheric variability in precipitation and temperature (e.g., Koster et al., 2004, 2006; Seneviratne
et al., 2006a). Moreover, it is also relevant for the timescales of soil moisture autocorrelation (e.g., Koster and
Suarez, 2001; Seneviratne et al., 2006b). While many studies have investigated simulated evapotranspiration
sensitivities (Scott et al., 1997; Lohmann and Wood, 2003; Wang et al., 2006), little is known about the actual
magnitude of this parameter, or on its dependence on vegetation, soil, and/or climate characteristics. This is
mainly due to the lack of simultaneous observations of ET and soil moisture at similar spatial scales. New
ways to analyze data from existing networks are needed. Salvucci (2001) for instance present a method to esti-
mate the storage-dependency of losses (including ET ) in data-limited environments from sparse soil moisture
observations and daily rainfall.

Here we propose a method to derive this parameter from ET decay during wet-dry transitions in absence of
rainfall. We analyze data from different sites with contrasting soil, vegetation, and climate characteristics. For
two sites, the derived sensitivity parameters/decay timescales are compared to simulations with different Land
Surface Models (LSMs) participating in the Second Global Soil Wetness Project (GSWP-2, Dirmeyer et al.,
2006a). Since no calibration has been performed for these sites, the (dis)agreement both among the different
LSMs and with the observations is likely to be indicative for the current uncertainty in parameterization of ET
sensitivity to soil moisture. A larger sample of comparison sites would be desirable for a more comprehensive
analysis, but this is limited by the lack of ET observations in the GSWP-2 time period (1987–1996).

∗This chapter is an edited version of: Teuling, A. J., S. I. Seneviratne, C. Williams, and P. A. Troch (2006), Observed timescales
of evapotranspiration response to soil moisture, Geophys. Res. Lett., 33(23), L23403, doi:10.1029/2006GL028178. Copyright 2006
American Geophysical Union.
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Figure 4.1. Location of the sites mentioned in this study. See Table 4.1 for abbreviations.

4.2. Data

Daily time series of ET are analyzed for 15 vegetated sites, covering a wide range of geographical, climate, and
land cover conditions (see Fig. 4.1 and Table 4.1). Several sites (AU, BV, LW, IO, RC) are part of FLUXNET.
For details see the project website (www.fluxnet.ornl.gov). For BV and LW, the data are extracted from the
daily gap-filled Marconi Collection (Falge et al., 2005). At other sites the observations were part of shorter
campaigns, e.g., FIFE (KP), SEBEX (SB), or GLOWA-Volta (EJ and TA). Most datasets have already been
described in the literature (Table 4.1). In most cases, ET fluxes are derived from eddy covariance measurements.
In some cases, they are derived by energy balance closure (SB, EJ, TA). All fluxes were measured above the
canopy. At RD, ET was calculated from the daily change in lysimeter weight, corrected for drainage. All
the data are converted to daily values and appropriate units. Occasional missing (half-)hourly ET values are
linearly interpolated either from the daily course on the preceding and antecedent days (if not missing) or
hours. Days with either too many missing values or minor rainfall are excluded from the analysis. In addition,
we utilize daily average obervations of global and net radiation.

Model data come from GSWP-2 (grads.iges.org/gswp2). In this project different LSMs produced a Multi-
Model land surface analysis on a 1◦ global grid using the same forcing and boundary conditions (Dirmeyer
et al., 2006a). Here we use the baseline integrations (B0) for RD (51◦N, 6◦E) and SB (13◦N, 2◦E) both for the
individual LSMs and the Multi-Model analysis. For details on GSWP-2 and the individual models we refer to
the project website. Additionaly, we also analyzed GSWP-2 simulations with the ERA40 LSM.

4.3. Theory

Here we consider a vegetated land surface with deep groundwater (i.e., little capillary rise). Since vegetation
water storage is much smaller than soil moisture storage in the root zone (order of mm), we neglect its changes
during drydown. Under conditions where availability of soil moisture in the root zone limits root water uptake
by vegetation for ET , we assume a proportionality between ET and the available soil moisture storage S:

ET (t) = cS(t), (4.1)

where the proportionality constant c is the sensitivity of ET for S. For convenience, we will consider the inverse
of c, i.e., λ = c−1, which has the dimension of time. The (simplified) terrestrial water balance is:

dS(t)
dt

= P(t)−q(t)−ET (t), (4.2)

where P is rainfall and q is drainage. In absence of rainfall (P = 0), the soil rapidly drains to field capacity
below which water is held against gravity (q = 0). In this case, (4.2) reduces to:

dS(t)
dt

=−ET (t). (4.3)
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By combining (1) and (3) it follows that under rainless conditions:

ET (t) = ET0 exp
(
− t ′

λ

)
, (4.4)

where ET0 is ET at t = t0 and t ′ = t − t0. Exponential decay of ET in water-limited conditions has been
reported previously from observations (Williams and Albertson, 2004; Dardanelli et al., 2004) and has been
widely applied in probabilistic soil moisture analysis (e.g., Rodríguez-Iturbe and Porporato, 2004). The e-
folding time λ (or c−1) is the key parameter controlling the temporal evolution of ET . From (4.4) it follows
that λ can be estimated from observations of ET alone by (linear) regression of ln(ET ) on t ′.

In practice, the relation between S and ET (or t ′ and ln(ET )) is not perfectly linear. We use R2 resulting
from the regression between t and ln(ET ) to indicate the goodness of fit between S and ET . Obviously, the
hydrological significance of λ not only depends on R2 but rather on the range in observed ET (and thus soil
moisture). In order to link λ (or c) to LSM soil physical and root parameters, it is useful to estimate the size of
the storage volume S0 that would be depleted during full drydown (t → ∞) after the last rainfall event (at t0):

S0 =
∫ ∞

t0
ET (t)dt = λET0, (4.5)

where ET0 is estimated from the regression.

4.4. Results

4.4.1. Observations

The results of the linear regression between ln(ET ) and t ′ are shown in Fig. 4.3 and are summarized in Table 4.1.
At all sites, there is a strong relation between ln(ET ) and t ′. High R2 values (often > 0.9) at many sites suggest
the existence of a tight linear relation between S and ET . For three sites, namely BV, RD, and LW (Fig. 2C,
2D, and 2F), we have data for multiple years. This allows us to test the hypothesis that c is different for every
drydown. Interestingly, even with different ET0, the interannual differences in λ at are non-significant at the
95% level. This means the hypothesis cannot be rejected based on the observational evidence we present. This
suggests that the assumption of constant (though site-specific) sensitivity of ET for S is reasonable.

At GZ (Fig. 4.2B), two sites only 2 km apart but with different land cover show similar drydown. At IO
(Fig. 4.2E), Vaira and Tonzi Ranch are also less than 2 km apart but show a distinct difference in drydown, with
the woodland being more persistent. Note that in both cases, both sites would likely be assigned very similar
root parameters. Schenk and Jackson (2002) report 50% and 95% rooting depths for temperate savanna of 23
and 140 cm, respectively, and for semi-desert shrubland 28 and 130 cm, respectively. AU (Fig. 4.2G) has a
low ET0, likely due to low vegetation cover. Through its multiplicative effect on ET , the fraction of vegetation
cover affects ET0 rather than λ .

There appears to be a stronger relation between λ and vegetation cover than between λ and soil type or depth.
Small λ (<20 d) are found at grassland sites (KP, IO-V, TW), while larger λ (>30 d) are found at sites with tree
cover (RC, IO-T) and/or sites that experience seasonal droughts (SB, AU, EJ). Dardanelli et al. (2004) report
c to be 0.096 d−1 for several agricultural crops (corresponding to λ = 10.4 d). This is smaller than any of the
values in Table 4.1, even for the cropland site BV. At the Sahelien sites SB and EJ, the large λ suggests that the
perennial vegetation has adapted to the seasonal droughts by developing deep roots that prevent a rapid decay
of ET during the dry season. The role of deep roots in maintaining high ET rates during the dry season is well-
documented for the Amazon (Nepstad et al., 1994; Bruno et al., 2006; Hasler and Avissar, 2007). Interestingly,
the large λ are in contrast with the very shallow soils (<0.5 m) that were reported for the SB sites (Verhoef
et al., 1999). This suggests that the depth to which roots penetrate is not constrained to the shallow soil layer.

To test whether the decay in ET is a soil moisture and not a radiation effect, we normalize ET both by daily
average global and net radiation (Rg and Rn, respectively). Rg can be considered as the main external driving
force of ET , since it does not depend directly on conditions at the land surface. In general, e-folding times
of ET/Rg are close to those obtained by analysis of ET alone, with comparable R2 (Table 4.1). Considerably
larger e-folding times are found for ET/Rn, indicating a dependence of the denominator on ET (associated
with a surface temperature and albedo increase during drydown). The RD lysimeter data enables us to check
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the validity of the zero drainage assumption. Indeed, drainage only accounted for a negligible 1.03% (1990),
0.02% (1991), and 0.29% (1995) of the total water loss. Not surprisingly, we find very similar estimates of λ
when ET is regressed directly against the lysimeter storage S: 20.0, 19.3, and 21.5 d, for the years 1990, 1991,
and 1995, respectively.

Table 4.1 also lists estimates of S0 made by means of (4.5). These range from as little as 30 mm for shallow
rooting grass vegetation to over 150 mm for sites with deep rooting trees. Note that S0 should not be interpreted
as the total storage in the root zone. Ideally, it is only the part in which storage limits ET . In most cases
however, soil moisture might already have been limiting ET before the last rainfall. For TW, Hunt et al. (2002)
report that 53% of the available storage was utilized before ET was reduced.

4.4.2. GSWP-2 simulations

Figure 4.3A shows λ derived from regressions between ln(ET ) and t ′ for all models for the 1995 drought at
RD. The results for 1990 and 1991 are similar (App. D). For most of the models, λ compares well to the
observations. This is also true for the Multi-Model analysis. Some models have low λ , even below the lowest
value in Table 4.1. In contrast, some other models hardly show an effect of soil moisture depletion on ET . Since
all models have the same forcing, inter-model differences in λ are likely (although not necessarily) caused
by differences in soil moisture parameterization. Most R2 values are smaller than those in the observations,
suggesting that most models have a less strong coupling between S and ET . The Dardanelli et al. model
significantly underestimates the observations at RD and is among the models with smallest λ .

At SB, the situation is different (Fig. 4.3B). Although most LSMs simulate a near-perfect exponential decay
of ET (see R2 in App. D), the variability in λ between the models is large. Some models reduce ET by 63%
(e−1) in several days, while in other models this takes months. Although most models (and the Multi-Model
analysis) exhibit larger λ for SB than for RD, there seems to be a structural underestimation of the observed λ
for both the savanna (SB-s) and tiger-bush (SB-t) site. This structural difference can be explained by the fact
that most models do not account for water uptake by deep roots.

The inter-model variability is comparable to that found in previous LSM intercomparison studies. Lohmann
and Wood (2003) reported composite e-folding times for ET/Rn for LSMs participating in the PILPS phase
2(c) Red-Arkansas River experiment. From their results, e-folding times can be derived ranging from 4.3 to
42.0 d with an inter-model coefficient of variation (CV ) of 0.75. Even when only the significant regressions in
our analysis are considered, the CV among the models is comparable: 0.59 and 0.72 for RD (1995) and SB,
respectively. Although we test the GSWP-2 results only for 2 sites, the problems of some current generation
LSMs under conditions where soil moisture limits ET are likely to be typical for many other regions.

4.5. Discussion and Conclusions

The use of ET observations to determine the sensitivity c of ET to soil moisture storage has important advan-
tages. Firstly, the estimates are contrained by the water balance (4.3). Secondly, no soil moisture observations
and root parameters are required. Thirdly, ET observed at a flux tower will reflect soil moisture dynamics at the
scale of a footprint. Although both the size and the location of the footprint vary with atmospheric boundary
layer conditions, the derived c will represent a much larger area than a point-scale soil moisture observation. A
disadvantage of the method is that wet-dry transitions without significant rainfall might not occur frequently.
Minor incidental rainfall (<1 mm) will be intercepted and readily evaporated, and will not influence the results
as long as these days are excluded from the regression. More research is needed to test the robustness of our
results against factors such as vegetation dynamics, seasonality, and landscape complexity.

The timescales in Table 4.1 can serve as important benchmarks for LSM performance. The confrontation of
state-of-the-art GSWP-2 LSM simulations with observations for two sites suggests that the representation of
soil moisture effects on ET can still be improved in many LSMs. For many regions, estimates of the parameter
c from Table 4.1 might be used directly to diagnose c in LSMs. For regions such as the Sahel, it might prove
necessary to include a parameterization that captures the effect of deep roots on ET . Calibration/validation of
LSMs under more extreme conditions (like the wet-dry transitions studied in this paper) can lead to improved
model-dependent parameters or states (e.g., “effective” rooting depth, leaf area index). This, in turn, might lead
to more robust simulations of land surface hydrology under a range of (changing) climatic conditions.
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Figure 4.2. Daily ET versus day of year (DOY) for different sites under rainless conditions. Dashed lines
correspond to the 95% prediction intervals.

Figure 4.3. Distribution of λ for the GSWP-2 LSMs at (A) Rheindahlen (1995), and
(B) SEBEX. Observations (circle) and GSWP-2 Multi-Model analysis (square) are plot-
ted with 95% confidence limits. Triangle indicates the Dardanelli et al. (2004) model.
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5. Estimating spatial mean root-zone soil moisture
from point-scale observations∗

Root zone soil moisture is a key variable in many land surface hydrology models. Of-
ten, however, there is a mismatch between the spatial scales at which models simulate
soil moisture and at which soil moisture is observed. This complicates model valida-
tion. The increased availability of detailed datasets on space-time variability of root-
zone soil moisture allows for an a posteriori analysis of the uncertainties in the re-
lation between point-scale observations and the spatial mean. Here we analyze three
comprehensive datasets from three different regions, and identify different strategies
to select observation sites. For each strategy, we present methods to quantify the as-
sociated uncertainty. In general there is a large correspondence between the different
datasets with respect to the relative uncertainties for the different strategies. The uncer-
tainty can be strongly reduced if some information is available that relates soil mois-
ture content at that site to the spatial mean. Selection of the site closest to the spatial
mean on a single date only leads to minor reduction of the uncertainty over seasonal
timescales. The correlation with leaf area index or a wetness coefficient alone is insuf-
ficient to predict if a site is representative for the spatial mean soil moisture content.

5.1. Introduction

Soil moisture controls several processes at or near the land surface. Accurate soil moisture observations are
needed to predict these processes. However soil moisture observations are often available at the point-scale,
while most models utilize effective parameters representative for the average soil and vegetation. Similar prob-
lems arise when point scale soil moisture observations are combined with flux measurements. Vertical fluxes
of water and/or energy at several meters above the surface might be affected by spatial average soil moisture
conditions at the scale of the flux footprint. At many stations, for instance in the FLUXNET network (Baldoc-
chi et al., 2001), root zone soil moisture is monitored at a scale several orders of magnitude smaller than the
corresponding flux footprint. When validating model simulations with point-scale soil moisture observations,
or when assimilating these observations in models, attention should be paid to the uncertainty that results from
upscaling the point-scale observations to areal average soil moisture.

One of the first reports of soil moisture variability was made by Reynolds (1970). Other early reports on
extensive studies of soil moisture variability were made by Bell et al. (1980) and Hawley et al. (1983). Sev-
eral authors have noted that, despite the large spatial variability, the soil moisture patterns themselves remain
relatively stable over time (e.g., Vachaud et al., 1985; Mohanty and Skaggs, 2001). This temporal persistence
in the spatial pattern of soil moisture was used by Vachaud et al. (1985) to show that some sites maintain a
similar rank throughout the year, i.e., that some sites are more representative of the spatial mean than others.
Vachaud et al. (1985) called these sites “time stable”. Here we use the term “rank” stability rather than “tem-
poral” stability, following the arguments of Chen (2006). Rank stability has been used in many other studies
to investigate space-time dynamics of soil moisture fields and the potential of using a limited number of sites
to observe the mean response (e.g., Kachanoski and de Jong, 1988; Comegna and Basile, 1994; Grayson and
Western, 1998; Gómez-Plaza et al., 2000; Mohanty and Skaggs, 2001; Grant et al., 2004; Jacobs et al., 2004;
Petrone et al., 2004; Martínez-Fernández and Ceballos, 2005; Starks et al., 2006). Pachepsky et al. (2005)
reported rank stability to exist also in the vertical soil moisture distribution.

∗This chapter is an edited version of: Teuling, A. J., R. Uijlenhoet, F. Hupet, E. E. van Loon, and P. A. Troch (2006), Estimating
spatial mean root-zone soil moisture from point-scale observations, Hydrol. Earth Syst. Sci., 10(5), 755–767.
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Several authors have reported that soil moisture patterns reflect patterns in vegetation (e.g., Hupet and Van-
clooster, 2002; Schume et al., 2003; Cantón et al., 2004; Hupet and Vanclooster, 2005), soil texture (e.g., Price
and Bauer, 1984; Vachaud et al., 1985; Seyfried, 1998; Grant et al., 2004) and/or landscape characteristics
(e.g., Anderson and Kneale, 1980; Nyberg, 1996; Crave and Gascuel-Odoux, 1997; Bárdossy and Lehmann,
1998; Famiglietti et al., 1998; Qiu et al., 2001). It is also known from field observations that soil moisture
patterns can reflect patterns in landscape and/or soil characteristics in a wet state, while reflecting vegetation
and/or soil characteristics in a dry state (Grayson et al., 1997; Fitzjohn et al., 1998; Gómez-Plaza et al., 2000).
Recent advances in the theoretical understanding of these empiral findings have been made by Albertson and
Montaldo (2003). They showed that the temporal evolution of soil moisture variability is driven by the sum of
the covariances between soil moisture and different fluxes. The temporal dynamics of these different covari-
ance terms can be used to explain the different relations between mean soil moisture and its spatial variability
(Chaps. 6 and 8). The fact that different controls operate on the spatial soil moisture pattern depending on the
mean moisture content (e.g., Wilson et al., 2005, Chap. 8) has important implications for soil moisture sam-
pling and the applicability of the rank stability concept. For instance, Martínez-Fernández and Ceballos (2005)
concluded that it might take a year of sampling (a complete seasonal cycle) to correctly identify the most rank
stable site.

Spatial soil moisture fields are known to exhibit a correlation structure. Western et al. (1998) provide an
comprehensive table listing different geostatistical analyses of soil moisture fields. In general, correlation
lengths for soil moisture are small, with values of only 10–25 m being common (Loague, 1992). Even in
experiments with a relatively dense network, spatial correlation is often non-existent (Comegna and Basile,
1994; Hupet and Vanclooster, 2002). When terrain has a significant impact on the soil moisture pattern, the
larger correlation lengths can mainly be attributed to terrain indexes (Western et al., 1998). In Tarrawarra, the
spatial structure of the soil moisture field is known to be governed by topographic features in the wet state,
while there is little spatial correlation in the dry state (Western et al., 1999). Manfreda and Rodríguez-Iturbe
(2006) used the concept of correlation lengths in land surface properties to study the space-time sampling of
artificial soil moisture fields.

Here we investigate the relation between the dynamics of individual soil moisture observations and those of
the spatial mean at the field- or small catchment scale. We perform this exercise for three different datasets,
each having its own typical geographic and climatic conditions. By doing so, (dis)similarities between the
datasets can be identified. Different sampling strategies are identified and methods are presented to quantify
the corresponding uncertainties.

5.2. Data

The datasets were selected based on three criteria: a) observations on multiple depths so that a root-zone average
soil moisture content can be estimated, b) a sufficient number of sites that allows for accurate estimation of the
spatial mean root zone soil moisture content, and c) sufficient temporal dynamics so that the temporal variability
over a complete seasonal cycle is well represented. For the depth of the root zone we used the upper ∼70 cm
of the soil, which represents most (if not all) of the temporal dynamics of the soil moisture that is available for
root water uptake. Typically, 50% of the roots are already located in the upper decimeters of soil (Schenk and
Jackson, 2002). The depth is partly constrained by the observations, since we choose to include the observations
made at 60 cm depth (see below). Furthermore we choose a constant depth for all datasets, so that the results
can be compared directly. It should be noted that the temporal dynamics of soil moisture strongly decrease with
depth, so that our results are not very sensitive to the exact depth over which soil moisture is averaged.

The 10.5 ha Tarrawarra catchment is located in southeastern Australia (Fig. 5.1A). The catchment has been
subject to several intensive monitoring campaigns that aimed at investigating the soil moisture spatial pattern at
the small catchment scale. The soil texture in the catchment varies from silty-loam to clay, and the topography
is undulating with a maximum relief of 27 m. The climate is temperate. Land use is perennial pastures used
for grazing. At 59 dates between 20 September 1995 and 10 June 1997, soil moisture was monitored at 20
locations by means of a Neutron Moisture Meter (NMM). Observations were made at depths of 15, 30, 45, 60,
90, 120, and 150 cm, or to the depth of the access tube. Root zone soil moisture is taken as the average value
of the observations at 15, 30, 45, and 60 cm depth. Site 20 was excluded from the analysis since this data is
suspected to be erroneous (Grayson and Western, 1998). Furthermore days with missing observations for one
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Figure 5.1. Location of the study areas and observation sites. (A) Tarrawarra (2 m
interval contour lines), (B) R-5 (∼3 m interval contour lines), (C) Louvain-la-Neuve
(0.5 m interval contour lines). In (B) and (C) the numbering of sites is continuous along
rows. Open circles indicate sites that were omitted in the analysis.

or more sites were excluded, leaving observations at 54 days at 19 sites. The NMM data, along with a detailed
5×5 m Digital Elevation Model, was extracted from the Tarrawarra database (Western and Grayson, 1998).

The R-5 experimental catchment is located northeast of Chickasha, Oklahoma (USA). The USDA Agricul-
tural Research Service intensively monitored R-5 from 1966 to 1978. The 10 ha catchment is a native grassland
pasture used for grazing. The surface is gently sloping with an average slope of 3% (Fig. 5.1B). At 84 dates
between 21 January 1971 and 24 June 1974, NMM observations of soil moisture were made at 34 sites and at
8 different depths. Here we use the average value of the observations made at 15, 30, 45, and 60 cm depth.
One site (21) was excluded from the analysis since soil moisture at this site exhibited a suspicious drift, leaving
observations at 84 days and 33 sites. The R-5 dataset is described in detail by Loague (1992).

Soil moisture variability was measured in an 0.65 ha agricultural field in Louvain-la-Neuve (Belgium) as part
of a campaign that aimed at investigating the within-field spatial variability of evapotranspiration. Observations
were made on 45 days between 30 May 1999 and 13 September 1999. The observations were made on a regular
4×7 grid (see Fig. 5.1C) at different depths. He we use the average value of the Time Domain Reflectometry
(TDR) observations (0–20 cm), and the NMM observations at depths of 25 and 50 cm. The soil in the field is
classified as well-drained silty-loam and there is little relief. During the campaign the field was cropped with
maize. The climate is moderate humid. We also employ the Leaf Area Index (LAI) measurements that were
taken at each site on 12 July 1999. The dataset is described in detail by Hupet and Vanclooster (2002).
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5.3. Method

5.3.1. Notation

We study the volumetric soil moisture field θ(x, t). Observations of this field are available at discrete intervals in
space and time, namely x={x1,x2, . . . ,xn} and t={t1, t2, . . . , tk}where n and k refer to the number of observation
sites respectively dates. The indexes i and j refer to selected locations in space and/or time. The number m refers
to the number of observations used in calculations when not all available observations are used (m<n). We will
analyse different strategies to estimate average soil moisture from point scale observations. Two main classes
of strategies can be distinguished: those where the interest is in the soil moisture content itself (strategies I–V,
see Sect. 5.3.3), and those where the interest is only in observing the dynamics of the spatial mean (strategies
VI–IX, see Sect. 5.3.4). An overview of these strategies is given in Table 5.1.

5.3.2. Soil moisture distribution

We focus on the question if a set of soil moisture observations in space can, on average, be expected to follow a
normal distribution. From other field experiments it is known that, while most sets are approximately normally
distributed, individual sets of observations can show significant skewness and/or kurtosis (Famiglietti et al.,
1998). Although there is no fundamental reason why soil moisture should follow a normal distribution, the use
of this distribution has obvious advantages. Since soil moisture is bounded between residual moisture content
and saturation, bounded distributions might be more appropriate for some applications (Wood, 1997; Ryu and
Famiglietti, 2005). We perform a visual test for normality. For all k observation dates, the individual samples
θ(x, t j) are normalized by subtracting the observed spatial mean θ j and dividing by the observed standard
deviation s(θ j). These are estimated by:

Ê [θ(t j)] = θ j =
1
n

n

∑
i=1

θ(xi, t j) (5.1)

and

V̂ar [θ(t j)] = s(θ j)2 =
1

n−1

n

∑
i=1

[
θ(xi, t j)−θ j

]2
. (5.2)

These normalized values are ranked from dry to wet and plotted with their corresponding cumulative proba-
bility level. The probability axis is transformed such that a normal distribution yields a straight line.

5.3.3. Mean soil moisture estimation

In practice, the spatial average soil moisture content is often assumed to equal that at a single observation
site (strategy I). For this strategy, the uncertainty of this estimate is controlled by the spatial variability. This
spatial variability might depend on the mean moisture content, which is generally unknown (since this is to be
estimated). Therefore we define the “expected” spatial variability for each dataset, i.e., the variance that can be
expected at a given moment in time without prior knowledge of θ j (App. E):

Ê [Var(θ)] =
1
k

k

∑
j=1

Var [θ(t j)] . (5.3)

With the a priori knowledge that soil moisture patterns are persistent, some sites are more representative of
the spatial mean than others. Following Vachaud et al. (1985), we define the spatial difference δ (x, t j) between
the soil moisture content θ(x, t j) and the spatial mean water content θ j as:

δ (x, t j) = θ(x, t j)−θ j (5.4)

In contrast to previous studies on rank stability where δ was normalized by θ j, we express δ in the same
units as θ . Note that since δ is corrected for the spatial mean soil moisture at all t j, it reflects the persistence
in the spatial pattern of θ rather than in its actual magnitude. The temporal mean difference for every site δ i is
estimated as:

Ê [δ (xi)] = δ i =
1
k

k

∑
j=1

δ (xi, t j), (5.5)
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and the temporal variability of δ at site i, V̂ar [δ (xi)], as:

V̂ar [δ (xi)] = s(δi)2 =
1

k−1

k

∑
j=1

(
δ (xi, t j)−δ i

)2
. (5.6)

Although various definitions can be found in the literature for the most rank stable site Φ, the most straight-
forward definition is the site having the smallest absolute mean difference so that this site can be used directly
to estimate the mean soil moisture content (e.g., Grayson and Western, 1998):

Φ = {i | |δ i|< |δ m| ∀ m 6= i}. (5.7)

Through this definition, the most rank stable site can only be selected if the spatial and temporal dynamics
of the soil moisture field are known. This applies to cases where an area was first subjected to an intensive
monitoring campaign, and where monitoring is continued only at the site which, on average, is closest to the
spatial mean (strategy II). For strategy II we will assume E(δ Φ) = 0.

If the space-time variability of a soil moisture field is known from a preceding campaign, the spatial mean
might also be predicted from a regression between soil moisture at an individual site and the spatial mean. Since
the soil moisture differences at individual locations might be a function of θ j, this strategy can be expected to
yield more accurate estimates of θ j than strategy II. Since in general the best site will be chosen, we quantify
the uncertainty associated with this approach as the minimum of the variances around the regressions for the
individual sites (strategy III).

A serious drawback for application of strategy II is that a priori knowledge on the space-time dynamics of
the soil moisture field is required. This requires intensive sampling. As was suggested in previous studies (e.g.,
Vachaud et al., 1985; Comegna and Basile, 1994), a more practical method would be to select the most rank
stable site from one initial field survey at time t j. With this strategy (strategy IV), the most rank stable site Φ j

is the one that is closest to θ j. We therefore determine Φ j for all k spatial soil moisture fields. The effective
uncertainty associated with the approach of taking Φ j to represent θ j is influenced both by δ i and Var [δ (xi)].
The expression for this “overall” variance is derived in App. E.

If the mean soil moisture can be estimated from multiple measurements located randomly (strategy V), the
uncertainty of the mean will decrease with the number of observations m. Whereas in previous studies the focus
was mainly on the relative accuracy of the mean estimated from multiple observations (or the numbers of obser-
vations needed to achieve a required level of relative accuracy), we focus here on the absolute uncertainty since
this is a more relevant parameter for many modeling purposes. In the idealized case where the observations are
completely independent, the standard error of the mean sm is given by:

sm =
s√
m

, (5.8)

where s is the standard deviation of the individual observations. Since the soil moisture field exhibits spatial
correlation, the actual dependence of sm on the number of observations will differ from (5.8). To investigate
whether the actual dependence differs from (5.8), we derived this dependence from the observations. For all
observation dates and for 1≤m≤n/2, the spatial mean was estimated for all independent sets of observations
of size m. These sets of observations were selected randomly, but every site was only allowed to occur once,
yielding a maximum number of n/m sets. The standard error of the mean was then calculated as the standard
deviation of the estimated means. This procedure was repeated 20 times to reduce sampling effects, and the
results were averaged.

5.3.4. Mean soil moisture time series estimation

One might argue that for a particular site i the bias with respect to the spatial mean (δ i) is of little importance as
long as the dynamics of the spatial mean are well represented. In this case the goal of soil moisture monitoring
might be to estimate the spatial mean soil moisture dynamics rather than its actual value. The variability of the
difference between a time series at one site and the time series of the spatial mean is expressed by Var [δ (xi)].
This quantity expresses the temporal variability of a site with respect to the spatial mean, similar to Var [θ(t j)]
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Table 5.1. Sampling strategies and corresponding uncertainties. Values are expressed as
one standard deviation (volumetric moisture content). In the “Goal” column, “Abs”
refers to absolute value of the spatial average volumetric soil moisture content, and
“Dyn” refers to the dynamics of the spatial average.

Strategy Goal No. of Location of site(s) Tarrawarra R-5 Louvain-
sites la-Neuve

Climate 0.0639 0.0726 0.0471

I Abs 1 Random 0.0274 0.0263 0.0167
II Abs 1 On average closest 0.0079 0.0122 0.0067

to spatial mean
III Abs 1 Best regression 0.0014 0.0055 0.0025

with spatial mean
IV Abs 1 At single date closest 0.0166 0.0187 0.0150

to spatial mean
V Abs 2 Random 0.0128 0.0128 0.0083

3 0.0072 0.0078 0.0048
VI Dyn 1 Random 0.0162 0.0163 0.0115
VII Dyn 1 Smallest variability in 0.0076 0.0088 0.0042

difference to mean
VIII Dyn 1 Smallest RMSE 0.0079 0.0099 0.0067
IX Dyn 2 Random 0.0075 0.0077 0.0054

3 0.0042 0.0045 0.0031

for the spatial mean. If a site is randomly selected (strategy VI), the “expected” temporal variance with respect
to the spatial mean is (App. E):

E{Var
[
δ (xi)−δ i

]
}=

1
m

m

∑
j=1

Var [δ (xi, t j)] . (5.9)

If the goal is to capture the temporal dynamics of the spatial mean from a single observation site, a different
definition of rank stability might be more appropriate. In this case (strategy VII) one would prefer the site with
the smallest temporal variance of δ :

Φ = {i | s(δi)2 < s(δm)2 ∀ m 6= i}. (5.10)

Note that through this definition, the most rank stable site can only be identified if the complete space-time
dynamics are known. This is different from strategy IV, where only one spatial field is needed to identify the
site closest to the mean. Other definitions for the most rank stable site can also be found. For instance, Jacobs
et al. (2004) account for both the bias and variance of the soil moisture difference time series in the definition
of the most rank stable site by minimizing the root mean square error:

RMSEi = {δ
2
i +Var [δ (xi, t)]}

1
2 = E{[δ (xi)]2}

1
2 . (5.11)

This case (strategy VIII) will be analyzed in addition to the other definitions of rank stable sites. As was
already mentioned in the preceding paragraph, the soil moisture differences might depend on θ j. This means
that a better estimate of the mean response can be obtained by regression of soil moisture at an individual site
to the spatial mean. Since uncertainty around a regression is not affected by bias, this is the same as strategy III.
The uncertainty in the soil moisture time series at a single site with respect to the spatial mean time series
might be reduced by taking the time series of soil moisture averaged over different randomly located sites
(strategy IX). To quantify this reduction, we used an approach similar to that for strategy V. For all observation
dates and for 1 ≤ m ≤ n/2, the spatial mean was estimated for all independent sets of observations of size
m. The uncertainty was then calculated as the variability in the difference between the time series of these
estimates and the time series of the “true” spatial mean.
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5.3.5. A priori site selection

The location of the sites that best represent the mean conditions might identified a priori; i.e., based on land
surface properties that are known to influence soil moisture dynamics (soil texture, vegetation). For instance,
Vachaud et al. (1985) already discussed the relation between rank stability and soil texture. They stated that
“there is a high probability that if a location is the most wet at a given time, it will remain the most wet at other
times because it has the highest clay content”. For more hilly areas, Grayson and Western (1998, pp. 79) argued
that these sites “are in areas that are neither strongly convergent nor divergent, tend to be near the mid-slopes
and are in areas that have topographic aspect close to average for the catchment”. Different wetness indices
can be found in the literature that predict zones of below/above average wetness based on topography (see
Western et al., 1999, for their application to Tarrawarra). In this study we employ a wetness index developed
by Svetlitchnyi et al. (2003). The relative wetness coefficient at any point (ηi) is defined as the ratio of expected
soil moisture at that point (as influenced by topography alone) and the expected soil moisture for a flat surface
(without effects of topography). The (semi-)empirical model accounts for the effects of slope profile shape,
slope aspect, distance from the divide, and slope gradient on the soil moisture distribution in the top 0.5 m of
the soil (Svetlitchnyi et al., 2003, see also Chap. 6). In this way both effects of subsurface flow and exposure
are accounted for. Details of the model can be found in Svetlitchnyi et al. (2003). Here we investigate the
correlation between the wetness coefficient and the mean soil moisture difference δ i for Tarrawarra.

Leaf area index is known to positively influence evapotranspiration rates (e.g., Al-Kaisi et al., 1989; Hupet
and Vanclooster, 2004). This means that sites with higher than average LAI will have evaporated more in the
preceding period. At this site, one should expect a below-average soil moisture. In this way, a site with average
LAI might be associated with average evapotranspiration rates, and average soil moisture. Here we investigate
the correlation between LAI and the mean soil moisture difference δ i for Louvain-la-Neuve.

5.4. Results

5.4.1. Soil moisture distribution

Figure 5.2 shows the normalized soil moisture versus the cumulative probability. The straight line indicates
the standard normal distribution. In this plot, any structural deviation from a normal distribution will result in
a deviation from the straight line. From the scatter in the points (indicated by error bars) it can be seen that
individual distributions can deviate significantly from normal. However on average the points tend to cluster
around the normal line. This shows that, if no a priori information on the spatial soil moisture distribution is
available, the assumption of normality is reasonable. R-5 shows the least temporal variability in the shape of
the soil moisture distribution. These findings are in agreement with previous studies (Cosh et al., 2004).

To illustrate that the clustering around the straight line is not the result of sampling or the Central Limit
Theorem, we performed the same analysis on randomly generated spatial fields drawn from a lognormal distri-
bution. The inset in Fig. 5.2 shows that sampling has a minor impact on the results. The randomly generated
data from a non-normal distribution clearly deviates from a straight line.

5.4.2. Mean soil moisture estimation

With only one observation site located randomly (strategy I), the uncertainty associated with estimates of the
mean soil moisture is controlled by the spatial variability. Effective variability values are listed in Table 5.1.
Tarrawarra and R-5 have comparable standard deviations of 0.027 and 0.026, while Louvain-la-Neuve has a
somewhat smaller value of 0.017. This is likely due to the smaller size of the area (more than an order of
magnitude), the little variation in topography and/or soils as compared to the other sites. Since the spatial
distribution of soil moisture is approximately normal, 95% confidence intervals can be constructed with a
width of twice the expected spatial standard deviation. It is interesting to compare these values to variability
in the climate signal itself, that is the temporal variability of the spatial mean θ j. Since this is the signal that
one actually wants to observe, a comparison with the uncertainty (or noise) provides something that can be
interpreted as a signal-to-noise ratio. The variability of the climate signal is also listed in Table 5.1.

The sites that are on average closest to the spatial mean (strategy II) are indicated in Fig. 5.4 by the downward
triangles. With this strategy the uncertainty reduces to the temporal variability of the difference between soil
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Figure 5.4. Rank stability plots for the three datasets. The sites are ranked according to
δ i. The error bars indicate temporal variability (standard deviation). The numbers refer
to sites in Fig. 5.1. (A) Tarrawarra, (B) R-5, (C) Louvain-la-Neuve. Downward triangles
at the top indicate the most rank stable site (filled for strategy II, open for strategy VII,
red for strategy III, green for strategy VIII), upward triangles at the bottom indicate most
rank stable sites for strategy III with the most probable one(s) filled.

moisture at this site and the spatial mean. These values vary between 0.007 and 0.012 (see Table 5.1). Even
more precise estimates of the mean soil moisture from a single site are obtained with strategy III. Table 5.1
lists the minimum values of this observation strategy. The corresponding sites are identified in Fig. 5.4. For
all three datasets, these sites differ from the sites that are on average closest to the mean. These sites also have
a large time variability, indicating that the corresponding regression not only has an offset, but also that the
slope differs from 1. The low uncertainty (0.0014 to 0.0055) indicates that accurate soil moisture estimation
from a single site is possible over a range of wetness conditions; but only if the space-time dynamics of the soil
moisture field are known from a preceding campaign.

As noted before, the site closest to the mean might in practice be identified from a single spatial survey
(strategy IV). If there would exist perfect rank stability, this would give the same result as strategy II. However
careful analysis reveals that the site that is on average closest to the mean has a low probability of being
identified at a given moment in time. These probabilities are only 7% (4/54), 10% (8/84), and 4% (2/45) for
Tarrawarra, R-5, and Louvain-la-Neuve, respectively. On individual dates, between 60 to 70% of all the sites
would be identified as being closest to the spatial mean. These sites are identified in Fig. 5.4 by the upward
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Figure 5.5. Land surface characteristics versus versus mean soil moisture difference.
(A) Wetness coefficient η at Tarrawarra (R2 = 0.03), (B) Leaf area index at Louvain-la-
Neuve (R2 = 0.18). Error bars indicate the temporal variability in soil moisture differ-
ence for each site, similar to Fig. 5.4.

triangles. The site(s) that is (are) most likely to be identified as being closest to the mean on individual dates
(indicated by filled upward triangles) differ in all three cases from the site that is on average closest to the mean.
For Tarrawarra, R-5, and Louvain-la-Neuve these sites are 15, 30, and 1(22), with probabilities of 19% (10/54),
14% (12/84), and 11% (5/45), respectively. The large variation in sites being closest to the mean on individual
dates adds considerable uncertainty to strategy II. For Louvain-la-Neuve, this uncertainty is almost equal to
the spatial variability (0.0150 vs. 0.0167). This is caused by the selection of some sites with a large temporal
variability of the soil moisture difference. For the other two datasets, the uncertainty for strategy IV is still 61%
(Tarrawarra) and 71% (R-5) of the effective spatial standard deviation.

Figure 5.3 shows how the relative (to the spatial variability) uncertainty decreases with the number of ran-
domly located observation sites. In spite of any possible spatial correlation, the empirical relations for the
different datasets are close to the theoretical relation for fully independent samples (1/

√
m). For all datasets,

this relation slightly overestimates the actual uncertainty. When the mean of 4 independent samples is used to
estimated the “true” spatial mean, the uncertainty reduces to approximately 50% of the spatial variability. For
9 sites, this reduction is 70 to 75%. For independent samples, this reduction should be 50% for four samples,
and 66.7% for nine samples.

5.4.3. Mean soil moisture time series estimation

One might expect the uncertainty associated with the estimation of the temporal dynamics of the spatial mean
from a single site to be much less than that associated with the estimation of the mean itself. The effective
values of the uncertainty associated with the time series range between 0.0115 and 0.0163 (see Table 5.1). It
is interesting to compare the values in Table 5.1 for strategies I and VI. Strategy I represents the effective (for
all sampling dates) uncertainty caused by spatial heterogeneity, while strategy VI represents the effective (for
all sampling sites) uncertainty due to temporal or process heterogeneity. The ratios of the temporal and spatial
standard deviation around the spatial mean range between 0.59 and 0.68.

There are large differences in the temporal variability between the different sites. For some sites, the temporal
variability exceeds the spatial variability, while other sites show little temporal variability in their difference to
the spatial mean. The sites with minimum temporal variability are indicated in Fig. 5.4. In all the three datasets,
these sites do not correspond to the optimal sites for the other strategies. In two datasets (R-5 and Louvain-
la-Neuve), these sites even differ from all the sites that are closest to the spatial mean at individual dates. The
uncertainty for these sites is small: between 0.0042 and 0.0088. However even for the “best” site, the standard
deviation is still 10% of the climate signal.

The site with the lowest RMSE is indicated in Fig. 5.4. In two datasets (Tarrawarra and Louvain-la-Neuve)
the site with the lowest RMSE is on average also closest to the spatial mean, showing that in practice there might
be little difference between the definitions. The uncertainties for strategy VIII (0.0053–0.0080) are comparable
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to the values for strategies II and VII. If the time series of the spatial mean is estimated from the time series
of the mean of several randomly located sites (strategy IX), then the relative uncertainty (with respect to the
“expected” temporal variability) decreases with the number of sites in a similar fashion to Fig. 5.3 (not shown).
Table 5.1 lists the uncertainties in the case that four or nine sites are used to estimate the spatial mean. These
values are roughly 45% or 25 to 30%, respectively, of the variability in the individual time series (strategy VI),
which again is only slightly less than would follow from (5.8).

5.4.4. A priori site selection

Figure 5.5A shows the relation between the mean soil moisture difference δ i and the wetness coefficient for
the Tarrawarra catchment. This coefficient is indicative for the distribution of soil moisture in the upper 0.5 m
of the soil (Svetlitchnyi et al., 2003). The distribution of the wetness coefficient closely resembles the observed
detailed soil moisture patterns at Tarrawarra (e.g., Western and Grayson, 1998). Above average wetness is
encountered along the drainage lines, and below average wetness on the exposed north-facing slope. If point-
scale soil moisture is only distributed according to topography, one might expect a clear relation with the
wetness coefficient. Ideally, the sites that are closest to the spatial mean would have a wetness coefficient near
unity. However the actual correlation between the mean soil moisture difference and the wetness coefficient
is close to zero. The low correlation is illustrated by the fact that the site which has a wetness coefficient
closest to unity is on average the driest! This result is both surprising and contradicting: while the pattern of
the wetness coefficient seems very similar to detailed observed soil moisture patterns at Tarrawarra, there is
hardly any correlation between the individual NMM sites and the wetness coefficient. This is in line with the
findings by Wilson et al. (2004), who showed that even in catchments with significant topographic variability,
the topographic component might not be the largest contributor to the overall spatial variance.

For Louvain-la-Neuve, vegetation rather than topography can be expected to have the largest impact on the
spatial soil moisture pattern. Figure 5.5B shows the relation between LAI and the mean soil moisture difference
δ i for each site. Although the correlation is higher than for the wetness coefficient at Tarrawarra, it is still low
(R2 = 0.18). This might be due to the fact that LAI was observed only once under relatively wet soil moisture
conditions early in the growing season. The soil moisture pattern under these conditions might reflect the pattern
of soil texture rather than vegetation (LAI). However the correlation with the yield, which was measured at the
end of the growing season (Hupet and Vanclooster, 2002), is even lower (R2 = 0.16). These correlations are
too weak to predict the location of rank stable sites from LAI alone.

5.5. Discussion and Conclusions

So far, the local soil moisture differences δi to the spatial mean have only been discussed in terms of their
expected distribution. It is also interesting to look at their temporal correlation. Figure 5.6 shows the space-
time distribution of δ (x, t) for Louvain-la-Neuve sorted by the temporal mean difference for every site and the
spatial mean soil moisture for every date. This reveals an interesting property of the soil moisture field. For
a large part of the mean soil moisture range (indicated by “wet”), the local soil moisture differences remain
nearly constant, indicating a similar spatial pattern. Similarly, another (different!) spatial pattern exists in the
“dry” domain, with a less defined transition in between. These patterns likely reflect properties of the soil in the
“wet” domain, and vegetation in the “dry” domain. The apparent switch between two preferred spatial patterns
is similar to the one observed in Tarrawarra (Grayson et al., 1997). It should be noted that the LAI observations
were made in the “wet” domain, while the impact on the soil moisture pattern might be more pronounced in
the “dry” domain. This might partly explain the low correlation in Fig. 5.5A.

So far, we have not discussed the uncertainty introduced by measurement error. From a geostatistical analysis
of Tarrawarra TDR soil moisture, Western et al. (1998) report nugget values ranging from 0.020 to 0.024
(standard deviation) including both effects of small scale heterogeneity and measurement error. Western and
Grayson (1998) report the NMM observations to have an error standard deviation of 2.5 volumetric moisture
percent, i.e., 0.025. These values seem to overestimate the actual random error. Table 5.1 shows that the
scatter around the regression between soil moisture at individual sites and the spatial mean (strategy III) can
be as low as 0.0014. This is probably a better estimate of the true random error. For Louvain-la-Neuve, Hupet
et al. (2004) report total measurement uncertainties for the NMM and TDR of 0.0091 to 0.0095 resp. 0.0158
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Figure 5.6. Differences (δ (x, t)) between local soil moisture and the spatial mean for
Louvain-la-Neuve. The sites have been ranked as in Fig. 5.4, and the dates according
to their mean soil moisture content. Three domains can be distinguished: a wet domain
in which soil moisture variability reflects soil properties, a transition domain, and a dry
domain in which the variability reflects vegetation properties. The leftward triangle
indicate the site that is on average closest to the mean (strategy II), rightward triangles
the sites that on single dates are closest to the mean, and the downward triangle the date
of LAI observations.

to 0.0176 (standard deviation of the volumetric moisture content). The contribution of the instrument alone
is estimated as 0.005801 resp. 0.0021 to 0.0028. This is very close to the value for strategy III in Table 5.1
(0.0025). This suggests that it is possible to monitor spatial average soil moisture with approximately the same
accuracy as point-scale soil moisture, provided that the regression between the two is known.

On average, the spatial distribution of soil moisture is well approximated by a normal distribution. The
temporal dynamics of the spatial mean soil moisture can be estimated more accurately from a randomly located
site than the mean soil moisture itself. However the standard deviation of the uncertainty on these temporal
dynamics is still ∼66% of the effective spatial variability. Rank stable sites exist for all three datasets. The
uncertainty on the estimated spatial mean is reduced considerably (to ∼40% of the effective spatial variability)
if one of these sites is used to monitor soil moisture. However identification of these sites requires intensive
sampling. If such a site is selected from a single spatial survey, the overall uncertainty is still ∼75% of the
effective spatial variability.

For many sites, the temporal correlation in the soil moisture differences to the spatial mean results in an
accurate linear regression between soil moisture at that site and the spatial mean. The accuracy of this regression
is close to the random observation error for a single soil moisture observation. To first order, the relative (to
the spatial variability) standard error of the spatial mean soil moisture reduces with the inverse of the square
root of the number of randomly located sites used to estimate the mean. This means that the uncertainty can be
reduced by ∼50% if the mean is estimated from four sites rather than from a single site.

Although the spatial soil moisture pattern is known to be related to a combination of soil, vegetation, and
landscape characteristics, neither a wetness coefficient derived from a DEM or the LAI showed a high corre-
lation with the temporal mean soil moisture differences to the spatial mean for the different sites. It should
therefore not be expected that a particular site with an average wetness coefficient or average LAI has a close
to average soil moisture. The results presented in this paper are based on analysis of three datasets only. The
large consistency in the relative uncertainties between the different observation strategies (Table 5.1) suggest
they might be indicative for other areas as well.
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6. Improved understanding of soil moisture variability
dynamics∗

Different trends of soil moisture variability with mean moisture content have been re-
ported from field observations. Here we explain these trends for three different data
sets by showing how vegetation, soil and topography controls interact to either create or
destroy spatial variance. Improved understanding of these processes is needed for the
transformation of point-scale measurements and parameterizations to scales required for
climate studies, operational weather forecasting, and large scale hydrological modeling.

6.1. Introduction

Although the quantitative contribution of soil moisture to the global water budget is negligible, it plays a central
role in the global water cycle by controlling the partitioning of water and energy fluxes at the earth’s surface, and
may control the continental water distribution through land-surface atmosphere feedback mechanisms (Koster
et al., 2003). The ability of coupled models to reproduce these processes will strongly depend on the param-
eterization of soil moisture state-flux relations at the regional scale. The lack of accurate observations of land
surface states and fluxes at this scale, combined with the variability of soil moisture and the high non-linearity
of land-surface processes at the small scale, requires aggregation of small scale processes to larger scales in
order to prevent systematic biases in modeled water- and energy fluxes (Crow and Wood, 2002). For successful
aggregation, knowledge on soil moisture variability controls is indispensable.

Several scientists have reported soil moisture variability to increase with decreasing mean moisture content
(e.g., Famiglietti et al., 1999; Hupet and Vanclooster, 2002). Other scientists reported opposite trends (e.g.,
Western and Grayson, 1998; Famiglietti et al., 1998), were unable to detect a trend (e.g., Hawley et al., 1983;
Charpentier and Groffman, 1992), or found the trend to depend on the mean soil moisture state (e.g., Owe et al.,
1982; Albertson and Montaldo, 2003). Although many scientists have speculated about the origin of soil mois-
ture variability, there have been only few quantitative studies looking at how different processes act to either
increase or decrease the spatial variability of soil moisture. By using the similar media concept, Salvucci (1998)
showed how variability in soil texture leads to different soil moisture variability states in different limiting cases.
Albertson and Montaldo (2003) showed how covariances between soil moisture and fluxes, originating from
variability in soil moisture, forcing and/or land surface properties, can lead to either an increase or decrease in
soil moisture variability.

Here we develop a simple model that is able to reproduce the different observed soil moisture variability
trends for the three different data sets that were used in this study (see Figs. 6.1 and 6.3, upper panels). We also
show that the apparent contradictory observations can be explained by the temporal dynamics of the interaction
between soil, vegetation, and topography controls.

6.2. Data

Soil moisture (0–20 cm) variability was measured at an agricultural field in Louvain-la-Neuve (Belgium) on
60 days between 30 May 1999 and 13 September 1999 as part of a campaign with the objective to investigate
the within-field spatial variability of transpiration (Hupet and Vanclooster, 2002). The soils in the field are
classified as well-drained silty-loam and there is little relief. During the campaign the field was cropped with

∗This chapter is an edited version of: Teuling, A. J., and P. A. Troch (2005), Improved understanding of soil moisture variability
dynamics, Geophys. Res. Lett., 32(5), L05404, doi:10.1029/2004GL021935. Copyright 2005 American Geophysical Union.
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Figure 6.1. Location of the soil moisture observation sites. (A) Louvain-la-Neuve, with
0.5 m contour lines, (B) VCR-LTER site, (C) Tarrawarra, with 2 m contour lines.

maize. The climate is temperate humid. Meteorological observations are available from 1 January 1999 until
31 December 1999.

From 24 June 1998 to 26 Januari 1999, soil moisture (0–30 cm) was measured with 36 TDR sensors (spacing
1 m) at a gently sloping field transect at the Virginia Coastal Reserve Long Term Ecological Research (VCR-
LTER) site on the eastern shore of Virginia, USA (Albertson and Montaldo, 2003). The sandy loam soils
were covered by Johnson grass. Meteorological observations are available for the period 30 June 1998 until 27
September 1998.

The Australian Tarrawarra dataset results from an experiment that aimed at investigating the spatial pattern
of soil moisture at the small catchment scale. Between 27 September 1995 and 29 November 1996 a total of 13
soil moisture (0–30 cm) patterns were measured (Western and Grayson, 1998). Additional measurements are
summarized in Western et al. (2004). The soils in the catchment are silty-loam to clay, and the topography is
undulating with a maximum relief of 27 m. The climate is temperate. Land use is perennial pastures used for
grazing. Meteorological observations are available for the period 10 August 1995 until 25 October 1997.

6.3. Modeling variability

6.3.1. Point-scale soil moisture dynamics

Under most conditions, lateral flow in the upper part of the soil can be neglected, and the vertically integrated
soil moisture balance over a depth L can be written as:

dθ
dt

=
1
L

(T −R−q−S) (6.1)

where θ is the volumetric soil moisture content averaged over a depth L, T the throughfall, R the saturation
excess runoff, q the deep drainage, and S the root water uptake. Here L = 0.5 m. Throughfall is the rainfall P
that is not intercepted by vegetation. The size of the interception reservoir is taken proportional to the leaf area
index ξ , with a proportionality constant of 0.2 mm, and the reservoir is assumed to evaporate every day. Since
0≤ θ ≤ θs, where θs is the porosity, R equals T for θ = θs and is 0 for θ < θs. We assume bare soil evaporation
to be small in comparison to the root uptake over the entire profile. Drainage is calculated using Darcy’s law
with the unit-gradient assumption. Using the Campbell (1974) parameterization yields:

q = k(θ) = ks

(
θ
θs

)2b+3

(6.2)

where ks is the saturated hydraulic conductivity, and b a pore size distribution parameter. We write the vertically
integrated root water uptake S as:

S = frβ
(

1− e−cξ
)

Ep (6.3)
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Figure 6.2. Distribution of the wetness index η in the Tarrawarra catchment.

where fr is the root fraction in the layer of depth L, β a soil moisture stress function, c a light use efficiency
parameter, and Ep the potential evapotranspiration. The factor 1− exp(−cξ ) allows for spatially variable
response of unstressed transpiration to atmospheric boundary layer conditions (Al-Kaisi et al., 1989). For
Louvain-la-Neuve, the positive relation between ξ and S was confirmed by Hupet and Vanclooster (2004). Soil
moisture stress is modeled as:

β = β (θ) =





0, θ ≤ θw
θ−θw
θc−θw

, θw < θ ≤ θc

1, θc < θ ≤ θs

(6.4)

where the critical moisture content θc defines the transition between unstressed and stressed transpiration, and
the wilting point θw the point below which plants are no longer able to extract water from the soil matrix. Land
cover (or ξ ) is modeled with a spatial and temporal component:

ξ = ξmax

[
c1− (1− c1)sin

(
2π

DOY− c2

c3
+

π
2

)]
(6.5)

where ξmax is the local maximum of ξ , and ci specify the seasonal development of ξ .
The model defined by (6.1)–(6.5) sufficiently captures the non-linearities and dynamics of the soil moisture

loss processes, and similar models have proven successful in reproducing point scale soil moisture dynamics
(e.g., Albertson and Kiely, 2001; Laio et al., 2001). Here we choose a simple model since adding more com-
plexity to the model as presented would result in an increasing number of (generally unknown) covariances
between the parameters. In order to match the observed forcing, the model was integrated to yield daily values
(App. A).

6.3.2. Spatial closure

We reproduce the first and second order spatial moments of θ (θ and σ 2
m) by running a large ensemble of the

model defined by (6.1)–(6.5) with variable parameters. Initial conditions of θ are set by adjusting θ to a spa-
tially uniform q of 1 mm d−1. We assume both ln(ks) and ξmax to follow a normal distribution with parameters
µk,ξ and σk,ξ . Since θs and b are generally correlated with ks, we related these to ks by linear regression with
ln(ks), fitted to the data provided by Clapp and Hornberger (1978). This yields θs = −0.0147ln(ks)+ 0.545
and b = −1.24ln(ks)+ 15.3. Due to the positive effect of high ks on canopy growth through better aeration,
soil temperature and water transport to roots, we assume a (perfect) positive linear correlation between ln(ks)
and ξmax. Other vegetation parameters are taken as constants. Atmospheric forcing (P and Ep) was calculated
from available observations and assumed to be constant in space.
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Table 6.1. Parameter values used in the simulation of σs.

Parameter Louvain-la-Neuve VCR-LTER Tarrawarra

µk, σk ln[mm d−1] 5.6,0.63a 6.5,1.0 5.2,0.96a

θw, θc [-] 0.15θs,0.44θs 0.22θ b
s ,0.50θ b

s 0.35θs,0.67θs

µξ , σξ [-] 3.6,0.50a 3.6,0.50 6.0,1.0c

c [-] 0.55d 0.40 0.40
fr [-] 0.90 0.80 1
c1,c2,c3 [-,d,d] 0.5,114,260e 1,-,- 0.5,139,365c

ση [-] N/A N/A 0.1530f

ε [-] 0.005 0.005 0.013g

a Fitted from observations.
b Adapted from Albertson and Kiely (2001).
c From biomass observations using a specific leaf area of 0.02 m2 g−1.
d From Al-Kaisi et al. (1989).
e For 114≤ DOY≤ 283, else 0.
f Derived from a 5 × 5 m digital elevation model.
g From Western and Grayson (1998).

6.3.3. Total simulated variability

In order to account for spatial differences in the water balance caused by differences in exposure due to sloping
of the landscape, we follow Svetlitchnyi et al. (2003) and write the non-local effect of topography (subscript
T) on the distribution of available soil moisture θ ∗ = θ −θw in the top 0.5 m of the soil in terms of a wetness
coefficient η :

θ ∗T = ηθ ∗, (6.6)

where θ ∗ is the expected value of θ ∗ for a flat surface. In (6.6), local values of η depend on slope profile shape,
slope aspect, distance from the divide, and slope gradient (Fig. 6.2), and can be derived from a digital elevation
model. We refer to Svetlitchnyi et al. (2003) for more details. As a first order approach, we add the variance
caused by (6.6) to σ 2

m, assuming η = 1. To allow direct comparison with observations, we also account for
apparent variability due to a (bias-free and stationary) measurement error ε . The total simulated soil moisture
variance σ2

s can now be written as:

σ2
s (t) = σ2

m(t)+σ2
ηθ ∗2(t)+ ε2. (6.7)

6.4. Analysis and Results

Figure 6.3 shows the results of the simulations with the parameters listed in Table 6.1. The range of θ as well
as the magnitude, trend, and hysteresis of σs for the different data sets compare well to the observations. In
order to distinguish the contribution of different controls on the time evolution of σs, we derive an expression
for dσ2

s /dt quantifying their effect. Subtracting the spatial average equivalent of (6.1) from itself yields:

dθ ′

dt
=

1
L

(T ′−R′−q′−S′) (6.8)

where ′ denotes a deviation from the spatial average. Multiplying (6.8) by 2θ ′, performing a chain rule operation
to the left hand side, and averaging the result yields:

dθ ′2

dt
=

dσ 2
m

dt
=

2
L

(
θ ′T ′−θ ′R′−θ ′q′−θ ′S′

)
(6.9)

which is the expression for the time evolution of the spatial soil moisture variance derived by Albertson and
Montaldo (2003) but applied to our balance equation (6.1). Since the right-hand side of (6.9) consists of
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covariance terms, their contribution depends on the magnitude of soil moisture and flux anomalies as well as
on their mutual correlation. The sign of the correlation controls whether the different processes act to create or
destroy spatial soil moisture variance (see Albertson and Montaldo, 2003, for synthetic examples). Combining
(6.9) with the time derivative of (6.7) yields:

dσ2
s

dt
=

2
L

(
θ ′T ′−θ ′S′

)
︸ ︷︷ ︸

Vegetation

−2
L

(
θ ′R′+θ ′q′

)
︸ ︷︷ ︸

Soil

+σ2
η

dθ 2

dt︸ ︷︷ ︸
Landscape

. (6.10)

In stead of evaluating all terms separately, we group the correlated terms as (local) vegetation and soil con-
trols, and non-local landscape control. Figure 6.4 explains the different trends in Fig. 6.3 by evaluating the
contribution of the different groups in (6.10). For clarity the terms have been converted to monthly averages.
Since drainage is generally a fast process compared to evapotranspiration (Albertson and Kiely, 2001), much
of the soil contributions in Fig. 6.4 take place within days following major precipitation events. Daily values of
the vegetation contribution are of lower magnitude, but show less spread.

In the Louvain-la-Neuve dataset, soil moisture variability increases during the growing season. During winter
and spring (December–April), precipitation surplus causes soil moisture to remain near field capacity, and the
variance is fully adjusted to the soil footprint (Fig. 6.4A). Here the soil footprint is the soil moisture variance
under constant q. Until July, increases in variance due to heterogeneous transpiration are effectively (although
not entirely) canceled out by drainage. When drainage becomes negligible (August–September), spatially
variable water uptake by vegetation acts to create additional variance. This increase is only destroyed during
the first rainfall events in the late growing season (October–November), when the variance is “reset” to that of
the soil footprint (θ ′q′ > 0). It should be noted that even during summer root water uptake is not limited by the
availability of soil moisture (θ > θc). Since high S will ultimately lead to low θ , θ ′S′ < 0.

For the VCR-LTER data, this behavior is almost opposite (Fig. 6.4B). The (small) initial increase in σs

during July (Figs. 6.3 and 6.4), is due to heterogeneous but unstressed transpiration (θ ′S′ < 0). However, the
coarse grained soils in combination with high Ep lead to rapid soil moisture limitation on S. This causes a
sharp decrease in variance (θ ′S′ > 0) during August. Similar to the Louvain-la-Neuve case, rainfall events in
September force σs to re-adjust to the soil footprint, causing θ ′q′ < 0. Here a spatially variable q causes an
increase rather than a decrease in spatial variance of θ .

Tarrawarra shows a more complex pattern (Fig. 6.4C). In southern hemisphere spring (September–Novem-
ber), vegetation controls act to create variance (θ ′S′ < 0). This variance is initially destroyed by drainage of
rainfall. In this period, drying of the soil (dθ 2

/dt < 0) causes a transition from non-local to local controls
on σs (Grayson et al., 1997). This can be seen by the negative landscape contributions. Later during sum-
mer (December–February), soil and landscape controls become effectively zero due to advanced drying. The
strong soil controlled root water uptake (θ < θc) causes a transition of the sign of the correlation between S
and θ (θ ′S′ > 0) resulting in a strong decrease in σ2

s . The re-adjustment to the winter soil moisture state is
accompanied by an increase in σ2

s caused by both soil and (non-local) landscape controls.

6.5. Discussion and Conclusions

Our simulations show that both soil and vegetation controls can act to either create or destroy spatial variance.
The main discriminating factor between both behaviors is whether or not the soil dries below θc. This depends
on the soil texture as well as on the maximum precipitation deficit, which can show considerable interannual
variability in many regions. Including the effects of interannual variability in meteorological forcing on soil
moisture variability might be subject of future research. The fact that much of the observed soil moisture vari-
ability is actually created by vegetation anomalies (and thus ρ(θ ,ξ ) 6= 0) calls for new approaches to the soil
moisture aggregation problem. This suggests that future field campaigns can further contribute to our under-
standing of the soil-vegetation-atmosphere system not only by looking at soil moisture variability, but also at
how this variability is related to anomalies in soil and vegetation characteristics.
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7. Dry-end surface soil moisture variability during the
National Airborne Field Experiment 2006∗

Characterization of the space-time variability of soil moisture is important for land sur-
face and climate studies. Here we develop an analytical model to investigate how, at the
dry-end of the soil moisture range, the main characteristics of the soil moisture field (spa-
tial mean and variability, steady state distribution) depend on the intermittent character
of low intensity rain storms. Our model is in good agreement with data from the recent
National Airborne Field Experiment (NAFE’06) held in the semiarid Australian Mur-
rumbidgee catchment. We find a positive linear relationship between mean soil moisture
and its associated variability, and a strong dependency of the temporal soil moisture dis-
tribution to the amount and structure of precipitation.

7.1. Introduction

The central role of soil moisture in the climate system is nowadays widely recognized. Soil moisture directly
controls the water- and energy budgets at the land surface, and may also affect the peristence of anomalous
atmospheric conditions. Global soil moisture monitoring, however, is complicated due to large spatial and tem-
poral variability of soil moisture. Passive microwave remote sensing is among the most promising techniques,
but its applicability is complicated by its shallow sensing depth (few cm) and the coarse spatial resolution (tens
of km) of space-borne sensors (such as ESA’s upcoming Soil Moisture and Ocean Salinity mission, SMOS).
Methods to quantify the space-time dynamics of the surface soil moisture field can lead to improved sampling,
retrieval, validation, and downscaling.

Previous field experiments have shown that the spatial variability of surface soil moisture may depend, among
other factors, on the spatial mean soil moisture state. Reynolds (1970) has already hypothesized that due to the
effect of soil heterogeneity, spatial variability increases during infiltration, and is minimum after drydown.
Based on detailed observations along a hillslope transect, Famiglietti et al. (1998) found that the spatial mean
and variance have identical behavior. Both peaked after rainfall events, and decreased rapidly during drydown.
While both studies reported a decrease in variability with decreasing spatial mean soil moisture, opposite or
more complex relations have also been reported (see Chaps. 6 and 8, and discussion in Famiglietti et al., 1998).
A theoretical framework to analyze the changes in spatial variability of root-zone soil moisture was presented
by Albertson and Montaldo (2003). Here we apply this framework to study surface layer soil moisture in the
dry-end of the soil moisture range. The model is a limited case of the more comprehensive models utilized by
Albertson and Montaldo (2003) and in Chap. 6, and allows for full analytical characterization of the spatial and
temporal soil moisture variability. The model is subsequently tested on a unique, recently collected data set.

7.2. Data

The 3-week long National Airborne Field Experiment 2006 (NAFE’06) was undertaken in the Australian Mur-
rumbidgee catchment (Fig. 7.1A) during October–November 2006. The region experienced severe drought
conditions from 2001 onwards, and had no rainfall in the five weeks preceding the campaign. In the Murray
Darling basin, 2006 was the third driest year on record. Fortunately, during NAFE’06 there were several mi-
nor rainfall events totaling ∼20 mm (Fig. 7.2A). The objective of NAFE’06 was to provide data for SMOS

∗This chapter is an edited version of: Teuling, A. J., R. Uijlenhoet, R. Hurkmans, O. Merlin, R. Panciera, J. P. Walker, and P. A. Troch
(2007), Dry-end surface soil moisture variability during NAFE’06, Geophys. Res. Lett., 34(17), L17402, doi:10.1029/2007GL031001.
Copyright 2007 American Geophysical Union.
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Figure 7.1. Map of the Yanco region. (A) Location within the Murray Darling basin
(red) and the Murrumbidgee catchment (blue). (B) Location of the NAFE’06 field sites
and rainfall stations (◦).

soil moisture retrieval, downscaling, and data assimilation (see http://www.nafe.unimelb.edu.au). Ground ob-
servations of surface soil moisture were made at 6 field sites in the 60 × 60 km Yanco region (35◦S, 146◦E,
Fig. 7.1B). At each field, point soil moisture and precipitation were recorded at 20 min resolution. Here we
analyse soil moisture variability in the non-irrigated fields Y2, Y7, and Y10, which are all dry pastures used for
grazing. The predominant soil type is clay.

Soil moisture observations were made by means of the Hydraprobe Data Acquisition System (HDAS, Pan-
ciera et al., 2006), which integrates a GPS and the Vitel Hydra Probe (Seyfried and Murdock, 2004) in a GIS
environment. (The mention of product names does not constitute an endorsement of this product.) HDAS
made it possible to rapidly monitor surface (0–5 cm) soil moisture on a predefined grid within large field
sites. During NAFE’06, the different teams took a total of 16,937 HDAS readings. A maximum number of 3
separate readings were taken at each sampling location in order to get a representative point-scale value. HDAS
observations were calibrated against gravimetric measurements (taken throughout the campaign at different
locations) by means of a third-order polynomial regression. Some field-scale statistics are summarized in
App. F.

7.3. Temporal dynamics

In developing our model, we consider the volumetric soil moisture θ in a shallow surface layer of depth L.
In dry conditions, this layer is effectively “decoupled” from the deeper soil moisture (Capehart and Carlson,
1997). For convenience, we only model the dynamics of the transformed soil moisture ϑ :

ϑ = θ −ξ , (7.1)

where ξ is the residual soil moisture content. In the following, we denote the field-scale mean of any quantity
x by x, and its standard deviation by σx. With little vegetation and low intensity rainfall, the water balance is
dominated by infiltration of precipitation (P) and evaporation. Both processes occur in an alternating fashion,
with the latter process being much slower.

During storms (P > 0), point-scale variability in land surface properties (e.g., texture, vegetation, micro-
topography, macropores) causes variable infiltration (e.g., Reynolds, 1970). Without explicitely modeling these
processes, we assume that at any point a fixed fraction (α) of P contributes to the antecedent soil moisture.
During interstorm periods (P = 0), daily evaporation is proportional to the available surface moisture ϑ (Kurc
and Small, 2004). The resulting point-scale water balance is:

dϑ
dt

=
{

αP/L, P > 0
−ϑ/τ, P = 0,

(7.2)

where τ is the time scale of surface evaporation. In practice, τ will also be subject to spatial variability. In
the model however, a spatial variability in τ introduces a complicating time-dependent covariance between
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α and ϑ , which would also destroy rank stability (see below). Since drydown is a dissipative process, this
simplification has little impact on the results. The horizontal average of (7.2) at the field-scale (∼ 1 km2) is
obtained by replacing ϑ and α by their field-scale means ϑ and α , respectively:

dϑ
dt

=
{

αP/L, P > 0
−ϑ/τ , P = 0,

(7.3)

where spatial variability of P at the field-scale is neglected. Integrating (7.3) over different periods with constant
P, each starting at subsequent t0 and of duration ∆t, yields:

ϑ(t0 +∆t) =
{

ϑ(t0)+α P
L ∆t, P > 0

ϑ(t0)e−∆t/τ , P = 0.
(7.4)

The simplified water balance can also be written in terms of its deviations (ϑ ′) from the spatial mean (i.e.,
ϑ ′ = ϑ −ϑ ). Multiplying the resulting equation by 2ϑ ′, applying the chain rule (2ϑ ′dϑ ′/dt = dϑ ′2/dt), and
spatially averaging the result yields the spatial variance budget (Albertson and Montaldo, 2003):

dϑ ′2

dt
=

dσ2
ϑ

dt
=

{ 2P
L α ′ϑ ′, P > 0
− 2

τ σ 2
ϑ , P = 0,

(7.5)

where α ′ϑ ′ is the covariance between α and ϑ . By using:

α ′ϑ ′ = σασϑ ρα,ϑ , (7.6)

where ρα,ϑ is the correlation coefficient between α and ϑ , and the chain rule (dσ 2
ϑ /dt = 2σϑ dσϑ /dt), (7.5)

can be further simplified. In this case, ϑ ′ is linearly (and only) related to α ′, so ρα,ϑ = 1. Time integration
yields:

σϑ (t0 +∆t) =
{

σϑ (t0)+σα
P
L ∆t, P > 0

σϑ (t0)e−∆t/τ , P = 0,
(7.7)

which, due to the linear character of the model, is functionally equivalent to (7.4). For simplicity, we also
assume ρα,ξ = 1, so that:

σθ = σϑ +σξ . (7.8)

Through our formulation we ensure perfect rank stability of point-scale soil moisture (i.e., temporal per-
sistence in the spatial pattern), which is required in order not to violate the assumption that ρα,ϑ = 1. The
existence of rank (or time) stability in surface soil moisture fields was shown by Jacobs et al. (2004). Since
changes in θ and σθ in (7.4) and (7.7), respectively, are both proportional to P, the relation between θ and σθ
is linear:

σθ (θ) = CVα

(
θ −ξ

)
+σξ , θ ≥ ξ . (7.9)

where CVα = σα/α is the coefficient of variation of α .
The parameter values are given in Table 7.1. First, ξ was taken as the average observed values of θ before

the first rainfall (here DOY 306), τ was taken from Kurc and Small (2004), and α was optimized such that
the amplitude of θ was in correspondence with the observations. Next, σα and σξ were adjusted such that
(7.9) corresponds to the linear regression σθ = aθ + b between all observed θ and σθ (σα = aα and σξ =
b+ξ σα/α). Initial conditions for ϑ and σϑ are ξ and σξ , respectively. We use ∆t = 20 min.

The simultaneous increase of θ and σθ during storms of low intensity, and their subsequent decrease during
interstorm periods, is apparent in both the simulations and observations (Fig. 7.2B). The decay timescale of
Kurc and Small (2004) works well for the NAFE’06 conditions, with the observed amplitude and dynamics of
θ and σθ captured by the model. Regional scale precipitation variability induces only small variability in the
field-scale responses of θ , which is also suggested by the similar pattern of observed θ and σθ . The changes in
top 5 cm soil moisture were found to account for over half of the precipitation (α = 0.53).
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Table 7.1. Parameters and their values.

Parameter Symbol Value Units

Surface layer depth L 50 mm
Infiltration fraction (mean) α 0.53 -
Infiltration fraction (SD) σα 0.13 -
Evaporation decay time τ 2.8a d
Residual moisture content (mean) ξ 0.029 -
Residual moisture content (SD) σξ 0.015 -
Mean storm depth η 2.1 mm
Mean storm arrival rate λ 0.50 d−1

a Taken from Kurc and Small (2004) for semiarid grassland.

7.4. Mean versus variability

The relation between the spatial mean and variability is of interest for scaling. The modeled relation between
θ and σθ is given by (7.9). Note that (7.9) is independent of the interstorm decay time τ . Recently, Choi et al.
(2007) investigated the relation between the spatial mean soil moisture and coefficient of variation (CVθ ) for a
number of datasets. They optimized the parameters A and B in the empirical model:

CVθ (θ) = AeBθ . (7.10)

Here, this relation is hyperbolic:

CVθ (θ) = CVα +
1
θ

(
σξ −ξCVα

)
, θ ≥ ξ . (7.11)

Figure 7.3 shows the observed and simulated relation between θ and σθ . Overall, the (linear) model explains
88% of the variance in all observed σθ . Separate analysis of Y2, Y7, and Y10, yields R2 values of 0.92, 0.86,
and 0.83, respectively. The regressions are similar for all sites, confirming the validity of our assumption that
the field-scale soil moisture within the region responds similarly to a given precipitation input.

The relative variability CVθ decreases with increasing θ (Fig. 7.3). Since the absolute variability increases
with θ , the decrease of CVθ can be attributed to the increase in θ . For the exponential Choi et al. model, we
find parameters A = 0.61 and B = −0.067 (with soil moisture expressed in % as in Choi et al., 2007). The
difference between the models increases for θ > 0.10, partly due to the different fitting procedures (i.e., fitting
CVθ or σθ ). Although there is an obvious physical limit to the increase of σθ with θ due to the presence of the
upper bound at porosity, this limit was not reached during NAFE’06. The added value of our model (7.11) with
respect to the Choi et al. model lies in the fact that it can be interpreted in terms of the underlying processes.

7.5. Steady state distribution

The dynamics of soil moisture is governed by the occurence and amount of rainfall (Fig. 7.2), which are
both stochastic. We investigate the impact of climate variability (through P) on the steady-state soil moisture
distribution f (ϑ) (or f (ϑ)) by including a stochastic representation of rainfall pulses in the model. Here, storms
occur instantaneously, and can be described by a marked Poisson process. The depth of storm events and the
interarrival times are considered independent random variables. Both are exponentially distributed with mean
η and λ−1, respectively. The mean rain rate 〈P〉 equals ηλ . We estimate λ from the (spatial) average number
of non-interrupted rainless sequences during NAFE’06 at the 20 min resolution, and η from the corresponding
total rainfall over the same period (Table 7.1). In this simplified case, the resulting steady-state distribution is a
shifted Gamma pdf (App. G):

f (ϑ) =
(ϑ)λτ−1 exp

(−cϑ
)

c−λτΓ(λτ)
, (7.12)
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where c = (αη/L)−1. This distribution has mean ξ + λτc−1 and standard deviation (λτ)1/2c−1. For λτ = 1,
(7.12) reduces to a shifted exponential distribution. While our solution with linear losses is more realistic than
previous “minimalistic” models with constant losses (Milly, 2001; Calanca, 2004), it is valid for a smaller
range of climate conditions than the more complex models of (Rodríguez-Iturbe et al., 1999; Laio et al., 2001).
Although (7.12) is written in terms of field-scale averages, it is equally valid at the point-scale by using the
appropriate α . Figure 7.4 shows the resulting f (θ) and its sensitivity to climate scenarios. In the wet scenario
(〈P〉+), 〈P〉 is doubled either by an increase in η or λ (η+ and λ+, respectively). Similarly, we assume 〈P〉 to
be halved in the dry scenario (〈P〉−).

For the NAFE’06 conditions, which were below the climatic average, the mean and standard deviation of
the steady-state soil moisture distribution are 0.061 and 0.027, respectively. Its distribution is unimodal and
positively skewed. The positive skew is due to the decreasing evaporation towards ξ , corresponding to smaller
dϑ/dt, and subsequently larger f (ϑ). Independent high resolution point-scale observations at Y10 (Fig. 7.4)
confirm the validity of the model. Their distribution is also unimodal and positively skewed, with mean 0.064
and standard deviation 0.028. The wet scenario 〈P〉+ results in a mean soil moisture of 0.093, the dry scenario
〈P〉− in 0.045. While the mean soil moisture depends on 〈P〉 and not on its temporal structure (i.e., on the
balance between η and λ ), this structure does influence the steady state variability. When changes in 〈P〉 are
caused by changes in mean storm depth η (i.e., η+ and η−), the temporal variability is largest. Since the
temporal standard deviation is proportional to η , it is twice as high under η+ than under NAFE’06 conditions
(0.054 and 0.027, respectively). A reduction in mean storm frequency (λ−) causes a shift in the mode of f (θ)
towards ξ .

7.6. Discussion and Conclusions

An analytical model to study daily surface soil moisture variability dynamics in the dry-end of the soil mois-
ture range has been developed. Under the low intensity rainfall encountered during NAFE’06, the dynamics
of soil moisture are well reproduced by a linear relationship between soil moisture and daily evaporation. We
found that the spatial mean and standard deviation rapidly increased during rainfall, and slowly decreased dur-
ing interstorm periods. The temporal distribution of surface soil moisture was found to be highly sensitive
to the amount and structure of precipitation. The results are consistent with previous experiments (Kurc and
Small, 2004; Reynolds, 1970; Famiglietti et al., 1998), and allow for a more quantitative (water balance-based)
approach to surface soil moisture variability. More comprehensive models, for instance those utilized by Albert-
son and Montaldo (2003) and in Chaps. 6 and 8, are valid at the full soil moisture range, but require numerical
solution.
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8. Climate variability effects on spatial soil moisture
dynamics∗

We investigate the role of interannual climate variability on spatial soil moisture vari-
ability dynamics for a field site in Louvain-la-Neuve, Belgium. Observations were
made during 3 years under intermediate (1999), wet (2000), and extremely dry con-
ditions (2003). Soil moisture variability dynamics are simulated with a comprehensive
model for the period 1989–2003. The results show that climate variability induces non-
uniqueness and two distinct hysteresis modes in the yearly relation between the spatial
mean soil moisture and its variability. We demonstrate that the direction of hysteresis is
related to a yearly climate index that does not require soil moisture observations.

8.1. Introduction

Soil moisture is an important variable in many land surface models since it controls the partitioning of fluxes
of both water and energy. However soil moisture shows a large spatial variability, and the relation between soil
moisture dynamics at a point (i.e., the scale of most observations) and that of a larger area (field, region) are
still poorly understood. Over the past decades, field experiments have quantified the variability of soil moisture,
its intra-seasonal dependence on the mean soil moisture state (Bell et al., 1980; Famiglietti et al., 1998), and
its dependence on external factors such as soil, vegetation, and topography (e.g., Western et al., 1999; Wilson
et al., 2004). Western et al. (2003) analyzed spatial root zone soil moisture variability dynamics from 13 study
areas around the globe (their Fig. 8.6). Their analysis revealed that “variance increases with average moisture
in dry catchments and it decreases in wet catchments. Where the spatial mean moisture has a sufficiently large
range over time, the variance peaks at intermediate values”. While climate conditions are known to affect
soil moisture variability dynamics (Chap. 6), little attention has been paid to the role of interannual climate
variability on the dynamics of spatial soil moisture variability.

Here we analyze the impact of both intra-annual climate dynamics and interannual climate variability on soil
moisture variability at the field scale. We employ an extension of the comprehensive soil moisture variability
model used in Chap. 6. The advantage of this approach is that the number of parameters (with generally
unknown covariability) is small, while the parameters still reflect observable properties. Models of similar
complexity have been shown to correctly simulate root zone soil moisture dynamics under different climatic
conditions (Albertson and Kiely, 2001, Chaps. 2 and 6).

8.2. Data

Soil moisture variability was measured at multiple occasions during the growing seasons of 1999, 2000, and
2003 in a 1 ha agricultural field located in Louvain-la-Neuve, Belgium. The measurements were part of a
campaign that aimed at investigating within-field variability of transpiration (Hupet and Vanclooster, 2002).
The same instruments were used, but in a different experimental setup (Fig. 8.1). Detailed information on
the 1999 and 2003 data can be found in Hupet and Vanclooster (2002) and Hupet and Vanclooster (2005),
respectively. The 2000 data has not been analyzed before. The soils in the field can be classified as well-drained
silty-loam and there is little relief. During the campaigns the field was cropped with maize (Zea Mays L.). The

∗This chapter is an edited version of: Teuling, A. J., F. Hupet, R. Uijlenhoet, and P. A. Troch (2007), Climate variability effects on spa-
tial soil moisture dynamics, Geophys. Res. Lett., 34(6), L06406, doi:10.1029/2006GL029080. Copyright 2007 American Geophysical
Union.
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Figure 8.1. Location of the field and experimental setup. (A) 1999, with 0.5 m contour
lines, (B) 2000 (detail of 45 m long transect), and (C) 2003, both with location of maize
rows (dashed lines).

climate is temperate humid. Meteorological observations made in the vicinity of the field are available for the
period 1 January 1989 until 28 August 2003.

8.3. Model

We assume that the point-scale soil moisture dynamics are spatially unconnected. Vertical redistribution of soil
moisture is assumed to occur instantaneously (at the daily time step). We solve the daily water balance for a
number of independent soil columns of depth L:

dθ
dt

=
1
L

(T −S−E−R−q), (8.1)

where θ is the volumetric soil moisture content, T the throughfall, S the root water uptake, E the evaporation
from the soil surface, R the saturation excess runoff, and q the deep drainage. Here L = 0.65 m. Although roots
can penetrate deeper than 0.65 m, most of the water uptake occurs above this depth. The number of columns is
taken the same as the 1999 setup (28, Fig. 8.1A). Throughfall is rainfall that is not intercepted by vegetation.
The size of the interception reservoir is taken proportional to the leaf area index ξ (with a constant of 0.2 mm).
Root water uptake is thought to be proportional to a maximum transpiration rate Em, a soil moisture stress β (θ),
and a function accounting for leaf area index following Al-Kaisi et al. (1989):

S = β (θ)Em = β (θ)
[
1− e−cξ

]
ET0, (8.2)

where c is a light use efficiency parameter (0.55), and ET0 the potential evapotranspiration calculated by the
FAO Penman-Monteith method (Allen et al., 1998). The positive relation between ξ and S was confirmed by
Hupet and Vanclooster (2004). Soil moisture stress is modeled as:

β (θ) =





0, θ ≤ θw
θ−θw
θc−θw

, θw < θ ≤ θc

1, θc < θ ≤ θs,

(8.3)

where the critical moisture content θc defines the transition between unstressed and stressed transpiration, θs is
the porosity, and the wilting point θw corresponds to a pressure head of −150 m. To account for the effect of
different Em on θc (e.g., Denmead and Shaw, 1962), we determine θc dynamically from:

Em

Es
=

θc−θw

θ f −θw
, (8.4)
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where θ f is the field capacity and Es = 10 mm d−1 the maximum sustainable uptake at θ f . The field capacity
corresponds to a hydraulic conductivity k of 1 mm d−1 and is derived from:

k(θ) = ks

(
θ
θs

)2b+3

, (8.5)

where ks is the value of k at saturation, and b a pore size distribution parameter. We assume E to be proportional
to the remaining fraction bare soil (exp(−cξ )), ET0, and the inverse of the square root of time since the last
rainfall event (≥10 mm). E is included for a correct water balance when ξ is small, but it has little effect on the
soil moisture variability. Leaf area index ξ is modeled as:

ξ (t) =





0, t ≤ ts
ξmax

2

[
1− cos

(
2π t−ts

td

)]
, ts < t ≤ th

0, t > th,

(8.6)

where the sewing and harvest days ts and th are taken as 119 and 283, respectively, and td = 260 for all years.
This implies that both the dynamics and variability of ξ are considered to be the same for all years. Runoff R
is the part of T that causes oversaturation of the soil. Drainage q is assumed to be driven only by gravity, i.e.,
q = k with k(θ) defined by (8.5) and adjusted for daily timescales (App. A).

The spatial distribution of ξmax is assumed to be normal, with mean 3.6 and standard deviation 0.5 derived
from observations (Hupet and Vanclooster, 2002). The spatial distribution of ln(ks) is also assumed to be
normal, with parameters 5.6 and 0.4 fitted from observed ks at the site. As in Chap. 6, we relate θs and b to ks

by regressions derived from the data in Clapp and Hornberger (1978). These are θs =−0.0147ln(ks)+0.545
and b = −1.24ln(ks) + 15.3. Since soil and vegetation properties can show spatial correlation, we need to
specify the (linear) correlation coefficient of the joint spatial distribution of ln(ks) and ξmax. Due to the positive
effect of high ks on canopy growth through better aeration, soil temperature and water transport to roots, we
assume a positive correlation of 0.8. Impacts of correlation between soil and vegetation fields are discussed by
Montaldo and Albertson (2003). For every year, the soil moisture field was initialized at θ f .

8.4. Analysis and Results

It is of interest to identify the processes that are responsible for the temporal changes in spatial variability of
the simulated soil moisture field (here expressed as a variance σ2

s or standard deviation σs). Albertson and
Montaldo (2003) showed how the temporal changes in σ2

s are related to the covariances of the different water
balance terms and the soil moisture field. For our water balance (8.1) this yields:

dσ2
s

dt
=

2
L

(
θ ′T ′−θ ′E ′−θ ′S′

)
︸ ︷︷ ︸

Vegetation

−2
L

(
θ ′R′+θ ′q′

)
︸ ︷︷ ︸

Soil

, (8.7)

where the horizontal bars indicate spatial averaging, and the prime a deviation from the spatial average. For
convenience, the different terms in (8.7) have been grouped by vegetation and soil effects on dσ2

s /dt. E is listed
in the vegetation group since in the model it depends on ξ rather than soil characteristics.

An important variable that characterizes soil moisture dynamics in (sub)humid areas is Ψ (Chap. 2). It is
defined as the maximum precipitation deficit during the growing season (DP, calculated with respect to Em) and
scaled by the storage available for “unstressed” plant uptake:

Ψ =
DP

L
(
θ f −θc

) , (8.8)

where θc is taken at Em = 3 mm d−1. Ψ not only depends on climate (through DP), but also on soil and
vegetation characteristics. Deeper rooting vegetation will have lower Ψ, but also a more damped soil moisture
dynamics. In Chap. 2 it is shown that the expected value of this index can explain differences in observed soil
moisture dynamics. Here we determine Ψ for each year separately.
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Figure 8.2. Observed (σo) and simulated (σs) soil moisture variability versus spatial
mean soil moisture (θ ) for the years 1999, 2000, and 2003. The middle line indicates θ ,
the outer lines θ ±σs.
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Figure 8.4. Relation between θ and σs and direction of hysteresis for the years 1989
and 2002. The grey area indicates the corresponding frequency distribution of θ for the
growing season, and dotted line θc for Em = 3 mm d−1.

The upper panels in Fig. 8.2 show the observed soil moisture variability dynamics for the root zone (here
∼0.65 m). Although the observations were made at different spatial scales (Fig. 8.1), we argue that the effect of
spatial scale is reflected in the magnitude of σo rather than in its trend. In 1999, σo showed an increasing trend
with decreasing θ , while during the extremely dry summer of 2003, a similar initial increase in σo was followed
by a strong decrease at low θ . In 2000, neither θ nor σo showed strong dynamics. A more comprehensive
analysis of soil moisture variability in the years 1999 and 2003 can be found in Hupet and Vanclooster (2002)
and Hupet and Vanclooster (2005), respectively. Since the observations are limited in extent (namely 3 growing
seasons) and temporal resolution, they show only partly the hysteresis associated with rapid rewetting after
rainfall. This is further investigated using simulations.

The lower panels in Fig. 8.2 show the relation between the simulated mean soil moisture and its standard
deviation σs. In contrast to the observations, the simulations for the different years apply to the same spatial
scale, and are not limited to the growing season. An important element of the simulated soil moisture field is
that its variability near θ f is nearly constant. This is the soil “footprint”, which corresponds to the variability
that accommodates a spatially uniform q. For all three years, the simulations show behavior similar to the ob-
servations. Both the range in θ and the different trends in σo are realistically simulated. While the observations
do not cover the rewetting to θ f after the growing season, the simulations reveal that the relation between θ
and σs does not only show different trends, but is also subject to hysteresis. Interestingly, the direction of this
hysteresis can vary.

First we focus on the question what causes the non-uniqueness in the relation between θ and σs. Figure 8.3
shows the average vegetation and soil contributions to the variance rate of change budget in (8.7) as a function
of θ . It should be noted that the soil and vegetation groups are dominated by θ ′q′ and θ ′S′, respectively. There
is a clear structure in the vegetation contributions to dσ2

s /dt. If θ is above ∼0.25, then the spatial variability in
S (which for θ ≥ θc is not sensitive to soil moisture) causes σs to increase. The spatial variability in S is due
to the spatial variability in leaf area index. At lower θ , the vegetation contributions switch sign (S becomes a
strong function of θ ) and their magnitude increases. This can be explained by the fact that when soil moisture
is limiting, roots take up more water in wet soil columns than in dry ones. By doing so, they decrease the spatial
(inter-column) variability.

The transition between these two states is relatively fast, as is indicated by the corresponding local minimum
at 0.25 in the bimodal frequency distribution of θ . Soil contributions are only significant near θ f (∼0.35), and
counteract the vegetation effects (dσ2

s /dt ≈ 0). Vegetation effects are limited to the growing season. Negative
vegetation contributions do not occur early in the growing season when θ is high. In this period, the counteract-
ing effect of the soil contributions is also highest. Occasional positive soil contributions occur directly after the
end of the growing season. Figure 8.3 also shows that dσ 2

s /dt converges to the vegetation or soil contributions
in the dry or wet soil moisture range, respectively. This confirms the strong dependency of the different soil
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Figure 8.5. Index Ψ for the 15 years of simulation, sorted in increasing order. Small
values (Ψ < 1) result in clockwise hysteresis (black), while large values (Ψ > 1) result
in anti-clockwise hysteresis (white). Years in grey have no clear hysteresis direction.

moisture variability controls on θ .
The different trends in σs (increasing or increasing followed by decreasing) with decreasing spatial mean

soil moisture lead to different hysteresis loops in the relation between θ and σs, since the soil contributions that
counteract the previous vegetation effects on σs become significant only once the soil is rewetted to near θ f

(Fig. 8.3). This is illustrated in Fig. 8.4 for the years 1989 (dry) and 2002 (wet). The bimodal growing season
soil moisture frequency distribution in 1989 illustrates that during a large part of the season, θ is below θc,
and vegetation destroys spatial variance. This does not occur in 2002, when the distribution is unimodal. This
shows that θc acts as a threshold that controls soil moisture variability dynamics. The yearly climate index Ψ,
which does not require information on soil moisture status, is a good predictor for the crossing of the threshold.
Figure 8.5 confirms that low Ψ (< 1) is associated with clockwise hysteresis in the relation between θ and
σs, and high Ψ (> 1) with anti-clockwise hysteresis. Note that the crossing not necessarily occurs exactly at
Ψ = 1, due to variability in θc and the initial soil moisture content at the start of the period over which DP is
determined.

8.5. Discussion and Conclusions

While spatial patterns of soil moisture are known to reflect patterns in soil and vegetation, they are also affected
by climate variability. We conclude that the yearly relation between spatial mean soil moisture and its standard
deviation is non-unique, and is subject to hysteresis. The direction of hysteresis in time is clockwise for rela-
tively wet years, and anti-clockwise for dry years. Starting from field capacity, both types of hysteresis loops
share a similar initial increase in standard deviation with decreasing mean soil moisture.

The dynamic nature of soil moisture variability has important implications for current approaches to aggre-
gation and scaling of soil moisture. For instance, the fact that vegetation effects on soil moisture fields are
affected by climate variability might explain observed differences in scaling of surface soil moisture fields for
the same region during different field campaigns (Oldak et al., 2002). Furthermore in many aggregation stud-
ies, soil moisture variability is assumed to be constant or to be uniquely related to mean soil moisture. These
assumptions might not be appropriate.

In this study we prescribe the seasonal development of leaf area index rather than to model its development
dynamically in response to atmospheric and soil moisture conditions. Our reasons for doing so are twofold:
a) we could not validate its interannual variability, and b) we had no information on the processes that caused
its observed spatial variability. Although including vegetation dynamics might affect the interannual variability
of soil moisture (Montaldo et al., 2005), we assume these effects to be small for the vegetation and climate at
Louvain-la-Neuve.
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9. Epilogue

9.1. General discussion

In this thesis, simple models of soil moisture and evapotranspiration are used. Obviously, more complex models
have the advantage of more detailed process description, but they require detailed a priori knowledge about the
system. For instance, it is known that without calibration, models of intermediate complexity often perform
better than more complex models (Hogue et al., 2006). The required model complexity can, among other
factors, also depend on climate conditions (Atkinson et al., 2002). Especially when used to investigate field-
scale spatial variability (as in Chaps. 6 and 8), more complex models (i.e., with more parameters) result in
an extremely complex (and generally unknown) spatial covariance structure between the parameters. Simple
models have the additional advantage that their behavior is readily understood, providing easier insight into
many issues.

The use of simple models is justified by the fact that variability in, for instance, evapotranspiration, is almost
fully explained by radiation and/or soil moisture alone (Abramowitz, 2005, see also Fig. 4.2), limiting the
potential for more complex models to outperform simple models. Based on the results of Chaps. 2 and 4, one
might argue that land surface modelers have been developing more complex instead of more robust models. In
Fig. 4.3, the decay times (the key characteristic of the soil moisture reservoir) between the different GSWP-2
land surface models for Rheindahlen range from less than 5 to over 200 days. It is of interest to compare this
range between different models for one site to the range in observations for all sites (Table 4.1). Curiously, this
latter range is (much) smaller: 12.4 to 118 days. While model “validation” is common practice in hydrology,
the null hypothesis that a model (or one of its process parameterizations) is correct is hardly ever rejected.

Chapter 2 shows that even sparse soil moisture observations contain useful information on the shape of the
loss curve. Since the observed bimodality is apparent in simulations with a partly flat loss curve, but not when a
continuously increasing curve is used, the bimodality does suggest that the former curve is more realistic. Some
further indications that the loss curve has a domain with little sensitivity of the losses to soil moisture is provided
in Chaps. 6 and 8. If the loss function would be monotonically increasing, the system would behave dissipative
with respect to spatial soil moisture anomalies during interstorm periods. However, the opposite is observed for
intermediate mean soil moisture. The initial increase in spatial variability during drydown is well-reproduced
by a model where the losses have little sensitivity to soil moisture at intermediate values. Knowledge about the
shape of the loss curve is of relevance to land surface modeling, since in many land surface models the losses
are currently not well represented (Lohmann and Wood, 2003). The frequency distribution of soil moisture
might therefore function as a valuable additional diagnostic for land surface model validation.

It is also interesting to compare the timescales in Table 4.1 to autocorrelation timescales for soil moisture
anomalies from the literature. Following the original framework of Delworth and Manabe (1988), the time
constant of soil moisture autocorrelation decay under white noise rainfall anomalies equals the ratio between
potential evapotranspiration and soil moisture storage capacity in case of a linear relation between soil moisture
and evapotranspiration. In this case, the time contant of autocorrelation decay is also the time constant of
evapotranspiration decay in absence of rainfall forcing. Using the Delworth and Manabe framework, Vinnikov
et al. (1996) reported timescales in the order of 3 months for the Russian Valdai basin. While later studies have
reported somewhat smaller timescales of 1–2 months for other regions (Entin et al., 2000; Amenu et al., 2005),
these timescales are generally much longer than the evapotranspiration decay timescales in Table 4.1.

Two explanations can readily be given for the differences in autocorrelation decay and evapotranspiration
decay times. Firstly, the relation between soil moisture and evapotranspiration might not be linear but convex
(see Chap. 3). In the wet soil moisture range, this will lead to a slower dissipation of soil moisture anomalies.
Secondly, soil moisture autocorrelation decay times represent the persistence in the coupled land-atmosphere
system, while the evaporation decay times are a property of the “uncoupled” land surface only. Hence, evapo-
ration decay times are not affected by a possible non-whiteness of rainfall anomalies.

Chapters 5, 6, and 8 provide a consistent first-order picture of the temporal dynamics of the spatial variability
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of soil moisture. Near field capacity, the variability is constant and there is near-perfect rank stability (Fig. 5.6).
During drydown, this rank stability breaks down and a new pattern is established. In Chaps. 6 and 8, a perfect
respectively high positive correlation between saturated hydraulic conductivity and leaf area index is assumed.
This assumption results in high rank stability. However, Fig. 5.6 also reveals that reality is more heteroge-
neous. This is likely due to small-scale heterogeneous processes (see Hupet and Vanclooster, 2005) that are
not included in the model. This also implies the following contradiction: as long as the mean soil moisture
remains constant, there is near-perfect rank stability. However, as soon as mean soil moisture changes, then
also its spatial pattern changes (and with it, rank stability). As a result, perfect rank stability under changing
soil moisture conditions is extremely unlikely.

A matter of significant scientific interest is how parameterizations change with scale as a result of small scale
variabilities. This matter is well-studied for the relation between soil moisture and evapotranspiration (e.g.
Crow and Wood, 2002). Most of these studies derive aggregated soil moisture-evapotranspiration relationships
assuming only variability in soil moisture, but not in land surface properties. This will often result in a over-
rather than underestimation of the effects of spatial variability. When land surface properties are considered, the
spatial correlation structure between soil and vegetation fields plays a central role in closure schemes for sub-
grid soil moisture variability (Montaldo and Albertson, 2003). In the simple soil moisture variability model that
was applied in this thesis, this structure is represented by a single linear correlation coefficient. In more complex
models, this structure would be represented by a high dimensional correlation matrix. Despite its importance
to land surface modeling, surprisingly little is known about this structure. Apparently, its importance to land
surface modeling has not yet been fully recognized.

The issue of spatial scale also applies to the vertical discretization (or resolution). With the exception of
Chap. 3, this thesis treats the root zone as a single reservoir. However, it has been argued that the upscaling
from a vertically discretized (1-D) model to a single layer (0-D) model results in non-uniqueness of the upscaled
parameterizations (Guswa, 2005). The fact that there is little observational evidence that supports the use of
1-D models over 0-D models when evapotranspiration is concerned, favors the use of the low-dimensional 0-D
models such as those used throughout this thesis. This might not be the case when fast processes such as runoff
are concerned (Kim et al., 1996; Downer and Ogden, 2004).

9.2. Directions for further research

Unrealistic land surface process representation, especially the sensitivity of evapotranspiration to soil mois-
ture, is known to impact the simulated feedback with the atmosphere through its effect on the magnitude and
dynamics of evapotranspiration (Koster and Suarez, 1996). Hence, it is important that land surface models
have the correct response, or coupling, to atmospheric conditions (Abramowitz, 2005; Lawrence and Slingo,
2005; Dirmeyer et al., 2006b). When the soil moisture component in land surface models is “validated”, it is
often rescaled to soil wetness (relative moisture content). This procedure, however, also removes the physical
dimensions of the soil moisture dynamics (i.e., the direct linkage between soil moisture storage and evapotran-
spiration as in Chap. 4). Future land surface model calibration/validation should therefore focus on changes in
soil moisture storage rather than soil wetness. This is likely to result in more robust models.

In Chaps. 6 and 8, the key determinant of the spatial-temporal evolution of the soil moisture distribution
is the correlation structure between different land surface characteristics. This correlation is also the central
parameter in the closure schemes for sub-grid soil moisture variability (Montaldo and Albertson, 2003). Given
the complex interactions between vegetation, soil, and soil moisture, it seems unlikely that this correlation can
be derived a priori (i.e., from theory). Future field experiments would provide valuable insight into soil mois-
ture variability if, besides soil moisture observations, also accompanying observations of soil and vegetation
characteristics would be made that allow for a complete observation-based characterization of the controls on
soil moisture variability. One other possible solution to this problem is to investigate whether this correlation
can be derived soil moisture observations only, for example the intensive soil moisture observations described
in Chap. 5.
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A. Time integration of gravitational drainage

Using the assumption of gravitational drainage, the instantaneous downward flux of water q is equal to the
unsaturated hydraulic conductivity k. Campbell (1974) proposed the following parameterization of k(θ):

k(θ) = ks

(
θ
θs

)2b+3

, (A.1)

where ks is the hydraulic conductivity at saturation, θs the saturated moisture content or porosity, and b a pore
size distribution parameter. Assuming that all changes in soil moisture are caused by drainage q, the water
balance becomes:

dθ
dt

=−q
L

(A.2)

so that by using q = k, the rate of change in soil moisture storage due to drainage can now be written as:

dθ
dt

=−ks

L

(
θ
θs

)2b+3

. (A.3)

Since this equation is highly nonlinear for most realistic b, it cannot be used directly to predict the change in θ
due to drainage over longer time intervals. Rewriting (A.3) yields:

dt =− L
ks

(
θ
θs

)−2b−3

dθ . (A.4)

Integration over a time interval ∆t = te− t0 yields:

∫ ∆t

0
dt =−

∫ θ∆t

θ0

L
ks

(
θ
θs

)−2b−3

dθ , (A.5)

where θ0 and θ∆t are the values of θ at t = 0 and t = ∆t, respectively. Performing the integration yields:

∆t =
1

2b+2
θsL
ks

[(
θ0

θs

)−2b−2

−
(

θ∆t

θs

)−2b−2
]

. (A.6)

Rearranging the different terms in (A.6), and using q∆t = (θ0−θ∆t)L yields an expression for q over any time
interval ∆t:

q∆t = Lθ0−Lθs

[(
θ0

θs

)−2b−2

+
(2b+2)ks∆t

θsL

]− 1
2b+2

. (A.7)
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B. Integration of double exponential with linear term

Depth integration of (3.6) requires integration of the following term between 0 and zc:

λ ′Em

∫ zc

0

θ ′(z, t)
θ ′c

e−λ zdz = λ ′Em

∫ zc

0
exp

(
θ ′0−θ ′c

θ ′c
− λ ′e−λ zEmt

θ ′c

)
e−λ zdz. (B.1)

The integral on the right hand side can also be written as:

∫ zc

0
exp

(
θ ′0−θ ′c

θ ′c
− λ ′e−λ zEmt

θ ′c

)
e−λ zdz = exp

(
θ ′0−θ ′c

θ ′c

)∫ zc

0
exp

(
−λ ′e−λ zEmt

θ ′c
−λ z

)
dz. (B.2)

Hence, solving (B.1) is equivalent to solving the double exponential integral I:

I = λ ′Em exp
(

θ ′0−θ ′c
θ ′c

)∫ zc

0
exp

(
−λ ′e−λ zEmt

θ ′c
−λ z

)
dz. (B.3)

By application of the chain rule it can be seen that:

d
dz

exp

(
−λ ′e−λ zEmt

θ ′c

)
= exp

(
−λ ′e−λ zEmt

θ ′c

)
· λ ′Emt

θ ′c
λe−λ z =

λ ′Emt
θ ′c

λ exp

(
−λ ′e−λ zEmt

θ ′c
−λ z

)
. (B.4)

The integral I can now be written as:

I = Em exp
(

θ ′0−θ ′c
θ ′c

)[
θ ′c

Emtλ
exp

(
−λ ′e−λ zEmt

θ ′c

)]zc

0

. (B.5)

By substituting the expression for zc in (3.5) and the expressions f = θ ′c/θ ′0, b = λ ′/λ , and τ = λEmt/θ ′0,
the integral I becomes:

I/Em =
f
τ

exp
(

1− f
f

)[
exp

(
−1− f

f

)
− exp

(
−bτ

f

)]
=− f

τ
exp

(
1− f

f
− bτ

f

)
. (B.6)

For zc = L, i.e., the third case in (3.6) for t ≥ tc(L), the integral I becomes:

I/Em =
f
τ

exp
(

1− f
f

)[
exp

(
−bτ

f
e−c

)
− exp

(
−bτ

f

)]
, (B.7)

where c = λL.
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C. Integration of double exponential without linear
term

Depth integration of (3.4) requires integration of a double exponential term between 0 and zc (here I):

I =
1
L

∫ zc

0
θ ′(z, t)dz =

θ ′c
L

exp
(

θ ′0−θ ′c
θ ′c

)∫ zc

0
exp

(
−λ ′e−λ zEmt

θ ′c

)
dz. (C.1)

The main difference with (B.1) is the absence of a linear term in the exponent. In order to solve (C.1), we
change variable: x = e−λ z ⇔ z =−λ−1 ln(x), so that dz =−(λx)−1dx. The integral I can now be written as:

I =
θ ′c
λL

exp
(

θ ′0−θ ′c
θ ′c

)∫ 1

eλ zc
x−1 exp

(
−λ ′Emt

θ ′c
x
)

dx. (C.2)

By introducing the new variable y:

y =
λ ′Emt

θ ′c
x ⇔ x =

θ ′cy
λ ′Emt

, (C.3)

dx can be written as:

dx =
θ ′cdy

λ ′Emt
. (C.4)

The integral I can now be written as:

I =
θ ′c
λL

exp
(

θ ′0−θ ′c
θ ′c

)∫ λ ′Emt
θ ′c

λ ′Emt
θ ′c

e−λ zc

e−y

y
dy. (C.5)

This integral can be solved with the help of the exponential integral function Ei(x):

E1(x) =−Ei(−x) =
∫ ∞

x

e−t

t
dt. (C.6)

The integral I now becomes:

I =
θ ′c
λL

exp
(

θ ′0−θ ′c
θ ′c

)[
E1

(
λ ′Emt

θ ′c
e−λ zc

)
−E1

(
λ ′Emt

θ ′c

)]
. (C.7)

By substituting the expression for zc in (3.5) and the dimensionless groups f = θ ′c/θ ′0, b = λ ′/λ , and τ =
λEmt/θ ′0, the integral I becomes:

I/θ ′0 =
f
c

exp
(

1− f
f

)[
E1

(
1− f

f

)
−E1

(
bτ
f

)]
. (C.8)

For zc = L, i.e., the third case in (3.6) for t ≥ tc(L), the integral I becomes:

I/θ ′0 =
f
c

exp
(

1− f
f

)[
E1

(
bτ
f

e−c
)
−E1

(
bτ
f

)]
, (C.9)

where c = λL.
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D. Regression results for GSWP-2 simulations

Table D.1. GSWP-2 e-folding times (λ ) and corresponding R2 for Rheindahlen (1990,
1991, and 1995 dry spells) and SEBEX. Non-significant regressions (95% level) are
italized.

RD 1990 RD 1991 RD 1995 SB 1989

Modela λ [d] R2 λ [d] R2 λ [d] R2 λ [d] R2

BUCKETIIS 7.0 0.86 6.2 0.93 5.4 0.92 6.0 0.87
CLM2-TOP 19.8 0.60 14.0 0.89 11.3 0.88 26.7 0.95
HySSiBLIS 18.5 0.79 21.4 0.78 18.3 0.76 65.1 0.84
ISBA 5.2 0.88 20.2 0.40 4.9 0.83 20.3 0.96
LaD 19.0 0.60 11.4 0.80 19.6 0.69 4.4 0.93
MOSES2 28.0 0.62 18.0 0.79 19.3 0.73 32.3 0.91
MosLIS 46.6 0.27 31.8 0.58 231. 0.02 6.9 0.96
NOAH 16.6 0.67 9.6 0.81 18.6 0.52 44.6 0.97
NSIPP-Catchment 29.2 0.41 11.6 0.75 42.9 0.37 22.7 0.92
ORCHIDEE 17.9 0.65 18.2 0.68 21.6 0.61 36.6 0.96
SiBUC 16.5 0.68 35.9 0.10 15.4 0.71 87.9 0.91
SSiB-COLA 5.7 0.75 10.8 0.03 3.5 0.95 21.0 0.66
SWAP 18.2 0.77 17.9 0.72 20.9 0.71 28.0 0.95
VISA 116. 0.04 14.1 0.76 1450. 0.00 26.6 0.89
TESSELb 17.2 0.51 32.4 0.24 22.3 0.44 34.0 0.69

Multi-model analysisc 17.8 0.77 17.1 0.82 16.1 0.92 29.2 0.94

Obsvervations 19.1 0.84 20.3 0.80 21.0 0.63 66.2d 0.63
a Abbreviations from the GSWP-2 website.
b The ECMWF LSM TESSEL, did not participate in GSWP-2.
c Does not include TESSEL.
d Based on average ET for tigerbush and fallow sites.
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E. Mean and variance for sum of densities

Here, an expression is derived for the mean and variance of a random selection from n densities of the same
random variable X , fi(X), with i = {1,2, . . . ,n}. Each density fi(X) has a mean E[X |i] = µi and variance
Var[X |i] = σ 2

i . Here we assume i to be a discrete random variate with uniform probability of n−1. The mean of
X is:

E [X ] = E [E(X |i)] = 1
n

n

∑
i=1

E [X |i] (E.1)

The variance of X can be calculated from:

Var [X ] = E
[
X2]−E2 [X ] . (E.2)

Since

E
[
X2] =

1
n

n

∑
i=1

E
[
X2|i] =

1
n

n

∑
i=1
{Var [X |i]+E2 [X |i]}, (E.3)

the variance of X can also be written as:

Var [X ] =
1
n

n

∑
i=1

Var [X |i]+ 1
n

n

∑
i=1

E2 [X |i]−{1
n

n

∑
i=1

E [X |i]}2. (E.4)

The last term of this equation is expanded as:

{1
n

n

∑
i=1

E [X |i]}2 =
1
n2

n

∑
i=1

E2 [X |i]+ 2
n2

n

∑
i=1

i−1

∑
j=1

E [X |i]E [X | j] , (E.5)

so that combining (E.4) and (E.5) yields an expression that allows Var [X ] to be calculated from the individual
E [X |i] and Var [X |i]:

Var [X ] =
1
n

n

∑
i=1

σ2
i +

n−1
n2

n

∑
i=1

µ2
i −

2
n2

n

∑
i=1

i−1

∑
j=1

µiµ j. (E.6)

Finally, if E [X |i] = E [X | j] ∀ j 6= i, then simply

Var [X ] =
1
n

n

∑
i=1

σ2
i . (E.7)
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F. Summary of the NAFE’06 soil moisture
observations

Table F.1. Field-scale mean (θ ) and standard deviation (σθ ) of the field-scale soil mois-
ture surveys during NAFE’06 for the non-irrigated field sites Y2, Y7, and Y10.

Y2a Y7b Y10b

Date θ [-] σθ [-] θ [-] σθ [-] θ [-] σθ [-]

31 October 2007 0.0319 0.0166
1 November 2007 0.0310 0.0154 0.0218 0.0107
2 November 2007 0.0319 0.0169
3 November 2007 0.0801 0.0213 0.0763 0.0237
4 November 2007 0.0578 0.0240
5 November 2007 0.0400 0.0190
6 November 2007c

7 November 2007 0.0315 0.0162
8 November 2007 0.0320 0.0146 0.0245 0.0135
9 November 2007 0.0294 0.0157
10 November 2007 0.0312 0.0146 0.0262 0.0138
11 November 2007c

12 November 2007c

13 November 2007 0.1592 0.0444
14 November 2007 0.1151 0.0426
15 November 2007 0.0800 0.0275 0.0828 0.0284
16 November 2007 0.0849 0.0234
17 November 2007 0.0741 0.0253 0.0654 0.0310
18 November 2007 0.0683 0.0249
a Regular 12 × 12 grid, 250 m spacing (3 × 3 km2).
b Regular 46 × 5 grid, 50 m spacing (2.3 × 0.25 km2).
c No sampling.
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G. Derivation of soil moisture distribution

Let an instantaneous rainfall event contribute an exponentially distributed amount I with mean µ (= c−1) to
transformed soil moisture ϑ . Furthermore, let ϑ− be the value of ϑ immediately preceding, and ϑ+ directly
after the event (ϑ+ = ϑ−+ I, see Fig. G.1). In the steady state, the pdf of ϑ− ( fϑ−(ϑ)) equals the pdf of soil
moisture at the end of the drydown following the event. In addition, if rainfall occurrence follows a Poisson
process, then fϑ (ϑ) equals fϑ−(ϑ).

We have to show that:

fϑ−(ϑ) =
ϑ λτ−1 exp

(
−ϑ

µ

)

µλτΓ(λτ)
, (G.1)

is the steady state pdf of ϑ . Because soil moisture decays exponentially (with constant τ) during drydown, and
the duration of drydown periods follows an exponential pdf with mean 1/λ , the conditional pdf fϑ−|ϑ+(ϑ) is:

fϑ−|ϑ+(ϑ) =
λτ
ϑ

(
ϑ
ϑ+

)λτ
. (G.2)

Hence the unconditional pdf of ϑ− becomes:

fϑ−(ϑ) =
∫ ∞

ϑ
fϑ−|ϑ+(ϑ) fϑ+(ϑ+)dϑ+. (G.3)

Because ϑ− and I are independent random variables, fϑ+(ϑ) is the convolution of fI(I) and fϑ−(ϑ):

fϑ+(ϑ) =
1
µ

∫ ϑ

0
exp

(
−ϑ − I

µ

)
fϑ−(I)dI (G.4)

Substituting (G.1) in (G.4) leads to fϑ+(ϑ). Subsequently substituting this result in (G.3) again produces (G.1).
This completes the demonstration.
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Figure G.1. Definition of the model and notation.
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Summary

Soil moisture is the amount of moisture in the upper part of the soil, where plant roots can be found. It plays a
central role in the hydrological cycle by controling the exchange of water and energy between the land surface
and the atmosphere. Therefore, it is a key variable in models of, for instance, rainfall-runoff, the weather,
climate, or crop growth. Up to present, the possibilities to monitor soil moisture from space are limited. Fluxes
to and from the soil moisture reservoir, as well as physical properties of the soil and vegetation, are difficult to
measure and can be subject to large spatial variability. Hence, improvement of land surface models is important.
This thesis investigates the linkage between spatial and temporal soil moisture variability on the one hand, and
evapotranspiration and climate on the other hand. The different chapters treat several aspects of this linkage.

Chapter 2 describes the impact of non-linearities in the relation between soil moisture and fluxes from the
soil moisture reservoir (the so-called loss-function) on the temporal distribution of soil moisture. This study
utilizes soil moisture data from Illinois (U.S.). The climate in this region is characterized by wet, cold winters,
and hot, dry summers. Previous studies have used the bimodality in the temporal soil moisture distribution as
evidence for a strong feedback between soil moisture and precipitation. However, a different explanation is
more plausible. The loss function has a domain with little sensitivity of the losses to soil moisture itself: there
where the losses are equal to the maximum (potential) evaporation. As a result, the probability of soil moisture
values in this domain is smaller than the probabability of values in the wet or dry domain. It is shown that soil
moisture dynamics in land surface models are directly related to the shape of the loss-function.

Chapter 3 describes the effect of different root water uptake parameterizations on the dynamics of evap-
otranspiration and soil moisture. Two different strategies are distinguished: a static strategy where the local
uptake at any depth primarily depends on the local availability of moisture, and an adaptive strategy where
the uptake also depends on the total root zone soil moisture. Starting from similar initial soil moisture, these
strategies lead to a completely different characteristic drydown. During drydown, the difference in evapotran-
spiration between the strategies can be as high as 50%. The corresponding differences in soil moisture are
smaller (since soil moisture integrates the preceding evaporation), but are still as high as 25%. Observations
suggest the adaptive strategy to be a better model for the real uptake.

Chapter 4 describes the typical timescales of evapotranspiration decay during drydown of a vegetated land
surface. These timescales reflect the sensitivity of evapotranspiration for soil moisture storage and are an
important characteristic for the dynamics of both. In land surface models, this sensitivity depends on several
soil and vegetation parameters. The values of these parameters are often uncertain. Knowledge about the
sensitivity can contribute to more robust estimates of, primarily, effective rooting depth. From an extensive
analysis of evapotranspiration observations during drydown, the sensitivity is found to range from less than
0.03 to 0.1 per day. In all investigated cases, the timescales exceeded the typical timescale for agricultural
crops from literature. The shortest timescales were found for grasslands; in general forests were characterized
by longer timescales. In two cases it was tested how well models participating in the Global Soil Wetness
Project (GSWP-2) reproduced the observed drydown. The considerable inter-model differences indicate that
the dependence of evapotranspiration to soil moisture storage in land surface models can be improved.

Chapter 5 describes different methods to estimate spatial average soil moisture in the root zone from point-
scale observations. This problem is relevant since root zone soil moisture is observed at the point-scale, while
many applications need the spatial average at the grid or pixel scale. The relation between soil moisture at the
point scale and its spatial average depends on the spatial variability of point-scale soil moisture, but also on
the temporal persistence in the spatial distribution. For this reason, two groups of strategies are considered for
the sampling of spatial soil moisture fields: one with the objective to monitor the spatial mean itself, and one
with the objective to monitor only the dynamics (i.e., temporal changes) of the spatial mean. The accuracy
of different strategies was investigated using three different datasets. The accuracy with which the dynamics
of the spatial mean can be estimated is in all cases higher than for the spatial mean itself. When a series of
spatial fields is available, there appear to be sites that are more representative for the spatial mean than others.
However it is shown to be impossible to identify these sites based on a single spatial survey or on vegetation or
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SUMMARY

landscape characteristics only.
Chapter 6 describes how the existence of different relations between spatial mean soil moisture and its

associated spatial variability in different datasets can be explained. Knowledge on the origin of the different
relations will aid the upscaling of models and parameterizations that are often applied beyond their spatial
validity scale (typically the point scale). It appears to be possible to simulate the temporal dynamics of the
spatial distribution by applying a simple soil moisture model to a large number of points in space. For each
point, the parameter values are taken from a spatial distribution. If necessary, a topographic correction is
applied. Based on the covariances between the soil moisture field and the different fluxes, it is determined
what processes (fluxes) cause the spatial soil moisture variance to either increase or decrease. By accounting
for effects of spatial variability in soil and vegetation characteristics, in combination with atmospheric forcing
(precipitation and potential evapotranspiration), different observed relations between spatial mean soil moisture
and its variability are explained.

Chapter 7 describes an analysis of intensive soil moisture observations made in the Australian Murrum-
bidgee catchment during the National Airborne Field Experiment (NAFE’06). During the three-week long
campaign, surface (0–5 cm) soil moisture variability was monitored in six field sites. Due to the dry back-
ground conditions in combination with several minor rainfall events, the dynamics of the spatial soil moisture
distribution could be described by a simple analytical model. After long rainless periods, soil moisture ap-
proached the residual moisture content. During rainfall, spatially variable infiltration caused a proportional
increase in both the spatial mean and its standard deviation. Both decrease exponentially during interstorm pe-
riods due to spatially variable evaporation. The time constant of this process is in the order of 2 to 3 days. The
moments of the steady state probability distribution of soil moisture depend both on the amount and stucture of
precipitation.

Chapter 8 describes the effect of climate variability on the yearly relation between spatial mean soil moisture
and its associated spatial variability for a field in Louvain-la-Neuve (Belgium). In this study, observations made
during three growing seasons have been compared to simulations over a longer 15-year period (1989–2003).
The observations were available for the years 1999 (average with respect to precipitation), 2000 (wet), and
2003 (dry). For each year, the observations show an initial increase in spatial variability with decreasing mean
soil moisture (1999 and 2000), followed by a strong decrease in the event of very low soil moisture conditions
(2003). The simulations show a similar pattern. Since the simulations also cover the period of rewetting after
the growing season, they reveal a hysteresis in the relation between spatial mean soil moisture and its variability.
The direction of the hysteresis loop differs for wet and dry years, and can be predicted by a simple climate index
which is the ratio between the maximum precipitation deficit and the available soil moisture storage above the
critical moisture content.

This thesis shows that relatively simple models are sufficient to capture the essence of soil moisture and
evapotranspiration dynamics. Since more complex models often fail to reproduce the observed processes, it can
be concluded that the focus should be on improving key land surface characteristics such as root distribution
and depth, rather than increasing model complexity. The spatial variability of soil moisture is shown to be
related to variability in soil, vegetation, and landscape characteristics, and should therefore only be considered
in conjunction with these characteristics. Evapotranspiration is shown to be insensitive to soil moisture for
soil moisture values around and just below field capacity. For lower soil moisture, the relation between soil
moisture and evapotranspiration is approximately linear. A correct representation of these processes in land
surface models is important, especially in conditions of increasing climate variability and drought.
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Samenvatting

Bodemvocht is de hoeveelheid vocht in het bovenste gedeelte van de bodem, daar waar planten hun wortels
kunnen hebben. Het vervult een centrale rol in de hydrologische cyclus door de controle op de uitwissel-
ing van water en energie tussen het landoppervlak en de atmosfeer. Het is daarom een belangrijke variabele
in modellen van bijvoorbeeld neerslag-afvoer, het weer, het klimaat, of gewasgroei. De mogelijkheden van
satelliet bodemvochtmetingen zijn tot op heden beperkt. Ook het modelleren van bodemvocht kent de nodige
moeilijkheden. Veel fluxen van en naar het bodemvocht reservoir, alsmede fysieke kenmerken van de bodem
en vegetatie, zijn lastig te meten en kunnen bovendien een grote ruimtelijke variatie vertonen. Dit maakt het
verbeteren van landoppervlaktemodellen belangrijk. Dit proefschrift onderzoekt de link tussen de ruimtelijke
en temporele variaties van bodemvocht enerzijds, en verdamping en klimaat anderszijds. In verschillende
hoofdstukken worden een aantal aspecten daarvan behandeld.

Hoofdstuk 2 beschrijft de invloed van niet-lineariteiten in de relatie tussen bodemvocht en de fluxen uit het
bodemvochtreservoir (de zgn. verliesfunctie) op de temporele verdeling van bodemvocht. Voor deze studie zijn
gegevens gebruikt uit Illinois (V.S.). Het klimaat in deze regio wordt gekenmerkt door natte, koude winters,
en hete, droge zomers. Eerdere studies hebben de bimodaliteit in de temporele verdeling van bodemvocht-
gegevens uit deze regio gebruikt als bewijs voor een sterke terugkoppeling tussen bodemvocht en neerslag.
Een andere verklaring blijkt echter aannemelijker. De verliesfunctie heeft een domein waarin de verliezen van
bodemvocht relatief ongevoelig zijn voor bodemvocht zelf, namelijk precies daar waar de verliezen gelijk zijn
aan de maximaal mogelijke (potentiële) verdamping. Als gevolg daarvan is de kans op bodemvocht waarden in
dit domein kleiner dan de kans op waarden in het natte of droge domein. Het blijkt dat bodemvochtdynamiek
in landoppervlaktemodellen direct gerelateerd is aan de vorm van de verliesfunctie.

Hoofdstuk 3 beschrijft het effect van verschillen in de parameterisatie van wateropname door wortels op de
dynamiek van verdamping en bodemvocht. Hierbij worden twee verschillende strategieën onderscheiden: een
statische strategie waarbij de lokale opname op elke diepte voornamelijk afhangt van de lokale vochtbeschik-
baarheid en een adaptieve strategie waarbij de lokale wortelopname juist afhankelijk is van de totale hoeveelheid
bodemvocht in de wortelzone. Deze twee strategieën hebben een totaal verschillende karakteristieke uitdroging
bij een gelijk initieel bodemvocht tot gevolg. Tijdens uitdroging kunnen de verschillen in verdamping tussen
de twee strategieën oplopen tot meer dan 50%. De corresponderende verschillen in bodemvocht zijn kleiner
(omdat bodemvocht een integrator is van alle voorafgaande verdamping), maar bedragen nog altijd meer dan
25%. Uit waarnemingen blijkt dat de adaptieve strategie een beter model is voor de werkelijke opname.

Hoofdstuk 4 beschrijft de typische tijdschalen van verdampingsafname tijdens uitdroging van een met veg-
etatie begroeid landoppervlak. Deze tijdschalen weerspiegelen de gevoeligheid van verdamping voor de totale
bodemvochtberging en zijn een belangrijke karakteristiek van de dynamiek van beiden. In landoppervlakte
modellen is deze gevoeligheid afhankelijk van diverse bodem- en vegetatieparameters. De waarden van deze
parameters is echter veelal onzeker. Kennis van de gevoeligheid kan bijdragen tot een betere schatting van met
name effectieve worteldiepte. Uit een uitgebreide analyse van verdampingswaarnemingen tijdens uitdroging
blijkt deze gevoeligheid te variëren van minder dan 0.03 tot 0.1 per dag. In alle onderzochte gevallen waren
de corresponderende tijdschalen groter dan de tijdschaal voor landbouwgewassen uit de literatuur. De kort-
ste tijdschalen werden gevonden voor graslanden; bossen werden over het algemeen gekenmerkt door langere
tijdschalen. In twee gevallen is getoetst hoe goed verschillende modellen uit het Global Soil Wetness Project
(GSWP-2) de uitdroging reproduceren. De gevonden verschillen geven aan dat met name de gevoeligheid van
verdamping voor bodemvocht in landoppervlaktemodellen voor verbetering vatbaar is.

Hoofdstuk 5 beschrijft verschillende manieren om voor een bepaald gebied het ruimtelijk gemiddelde
bodemvocht in de wortelzone te schatten uit puntwaarnemingen. Dit is een relevant probleem omdat bodem-
vocht in de wortelzone op puntschaal waargenomen wordt, terwijl een ruimtelijk gemiddelde op grid- of pix-
elschaal vaak het doel is. De relatie tussen bodemvocht op puntschaal en het ruimtelijk gemiddelde hangt in
eerste instantie af van de ruimtelijke variatie op de puntschaal, maar ook van de temporele persistentie van de
ruimtelijke verdeling. Er worden dan ook twee groepen van strategieën onderscheiden voor het bemonsteren
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van een ruimtelijk bodemvochtveld: één waarbij het doel is het gemiddelde zelf te schatten en één waarbij
het doel is om alleen de dynamiek van het gemiddelde te schatten. Voor drie datasets is onderzocht hoe goed
het ruimtelijk gemiddelde geschat kan worden met de verschillende strategieën. De nauwkeurigheid waarmee
de dynamiek geschat kan worden is in alle gevallen groter dan die van het gemiddelde. Wanneer een serie
van ruimtelijke velden beschikbaar is blijken er plekken te zijn die meer representatief zijn voor het ruimtelijk
gemiddelde dan andere. Het blijkt echter niet mogelijk te zijn om deze plek a priori aan te wijzen op basis van
een enkele ruimtelijke meetcampagne, of enkel op basis van vegetatie van landschap kenmerken.

Hoofdstuk 6 beschrijft verschillen in de relatie tussen ruimtelijk gemiddeld bodemvocht en de onderliggende
variatie op puntschaal zoals die geobserveerd zijn tijdens verschillende meetcampagnes. Kennis over hoe deze
verschillen ontstaan is van belang voor onder andere het opschalen van modellen en voor parameterisaties, die
meestal worden toegepast op een grotere ruimtelijke schaal dan waarop ze geldig zijn (vaak de puntschaal). Het
blijkt mogelijk om de temporele dynamiek van de ruimtelijke variatie te simuleren. Hiervoor is met behulp van
een eenvoudig model bodemvocht gesimuleerd voor een groot aantal lokaties. De parameters van het model zijn
voor elk punt getrokken uit een ruimtelijke verdeling. Indien nodig is een topografische correctie toegepast. Aan
de hand van de covarianties tussen het bodemvochtveld en de verschillende fluxen is bepaald welke processen
(fluxen) tot een toe- dan wel afname van de ruimtelijke variatie leiden. Door rekening te houden met effecten
van ruimtelijke variatie in bodem- en vegetatie-eigenschappen in combinatie met de atmosferische forcering
(in de vorm van neerslag en potentiële verdamping), zijn de verschillende geobserveerde trends in de grootte
van de ruimtelijke variatie als functie van het gemiddelde bodemvocht verklaard.

Hoofdstuk 7 beschrijft een analyse van uitgebreide oppervlaktebodemvocht metingen in het Murrumbid-
gee stroomgebied (Australië) tijdens het National Airborne Field Experiment (NAFE’06). Tijdens deze drie
weken durende campagne werd in een zestal gebieden van enkele vierkante kilometers de ruimtelijke verdel-
ing van bodemvocht in de bovenste 5 cm van de bodem gemeten. De zeer droge achtergrondomstandigheden,
in combinatie met lichte neerslag, maken dat de dynamiek van de ruimtelijke verdeling (gemiddelde en stan-
daardafwijking) met een zeer eenvoudig analytisch model beschreven kunnen worden. Na een lange periode
zonder neerslag is er geen verandering in bodemvocht waarneembaar: bodemvocht benadert dan het residueel
vochtgehalte. Door ruimtelijke variatie in infiltratie van neerslag was er tijdens buien een evenredige toe-
name van het ruimtelijke gemiddelde en de ruimtelijke variatie (standaardafwijking) van bodemvocht. Door
ruimtelijke variatie in verdamping tijdens uitdroging nemen beide exponentieel af in periodes zonder neerslag.
De tijdconstante van dit proces is in de orde van 2 tot 3 dagen. De momenten van de stationaire kansverdeling
van bodemvocht onder deze omstandigheden zijn zowel afhankelijk van de hoeveelheid als van de structuur
van de neerslag.

Hoofdstuk 8 beschrijft het effect van klimaatvariaties op de jaarlijkse relatie tussen gemiddeld bodemvocht
en de onderliggende variatie op veldschaal voor een veld in Louvain-la-Neuve (België). Hierbij zijn observaties
voor drie groeiseizoenen vergeleken met simulaties over een langere periode van 15 jaren (1989–2003). De ob-
servaties waren beschikbaar voor de jaren 1999 (een gemiddeld jaar qua neerslag), 2000 (nat) en 2003 (droog).
De observaties laten aanvankelijk een toename van de ruimtelijke variatie zien bij een afname van gemiddeld
bodemvocht (1999 en 2000), eventueel gevolgd door een sterke afname van de ruimtelijke variatie bij een zeer
laag gemiddeld bodemvocht (2003). De simulaties laten een zelfde patroon zien. Omdat de simulaties ook de
periode na het groeiseizoen beslaan, blijkt dat de relatie tussen gemiddeld bodemvocht en de onderliggende
variatie hysterese vertoont. De richting van de hysterese lus is verschillend voor droge en natte jaren, en kan
voorspeld worden aan de hand van een eenvoudige klimaatsindex die de verhouding weergeeft tussen het max-
imale neerslagtekort tijdens het groeiseizoen enerzijds, en de hoeveelheid beschikbaar bodemvocht boven het
kritiek vochtgehalte anderzijds.

Uit dit proefschrift blijkt dat de essentie van de dynamiek van bodemvocht en verdamping al met zeer een-
voudige modellen goed beschreven kan worden. Gezien de moeite die meer complexe modellen hebben met
deze processen kan worden geconcludeerd dat de aandacht voor modelcomplexiteit ten koste is gegaan van
kennis over de primaire kenmerken zoals wortelverdeling en -diepte. De ruimtelijke variatie in bodemvocht
blijkt gerelateerd aan de variaties in bodem- en vegetatie-eigenschappen, en hebben door deze relatie minder
invloed dan voorheen gedacht op het opschalen van model parameterisaties. Bij bodemvochtwaarden rond en
net beneden veldcapaciteit blijkt verdamping ongevoelig te zijn voor bodemvocht. Een juiste representatie van
deze processen in landoppervlaktemodellen is van groot belang, zeker wanneer deze modellen gebruikt worden
onder condities van toenemende klimaatvariaties en droogte.
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