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FOREWORD

The present work started out as an attempt to apply measurements of
tidal fluctuations in coastal aquifers to the determination of the geo-
hydrological characteristics of the formations, using existing theory.

It became apparent after a while however that the applicability of

the various available analytical models and the assumptions on which
they were based had not received enough attention, so that it was dif-
ficult to say whether discrepancies between theory and observation
were due to the inappropriateness of the models, or to weaknesses in
the basis theoretical assumptions, or simply to irregularities in hydro-
stratigraphy. One could of course simply leave the discrepancies at
that, or explain them away in a rather ad hoc manner, but such an ap-
proach was not likely to lead to better understanding. Thus the main
theme of the work gradually shifted to the development and empirical
evaluation of a more comprehensive theory for the propagation of
waves through aquifers. Through this approach my own understanding
of groundwater flow has been considerably improved; I hope now that
it may of some use to others.

During the process of coming to recognize and then grappling with these
problems the aid and encouragement of many different people has

been invaluable to me. In particular I would like to express my thanks
to Dr. H. Lazreg, Dr. M. L. Parsons, Mr. D. H. Lennox and especial-

ly Dr. P. A. Carr, of the Hydrology Research Division in Ottawa. Among
the many others who contributed through discussions and in the col-
lection and analysis of data my thanks go especially to the following;
Mr. M. Sylvestre, Dr. B. Dousse, Mr. A. J. Roebert, Mr. R. A. Schuur-
mans, Dr. J. Wesseling, and my Free University colleagues Mr. J. J. de
Vries and Mr. Th. J. Beukeboom.

Prof. Dr. P. Groen and Dr. A. Verruijt read the manuscript. Their many
constructive comments and suggestions are gratefully acknowledged.
Thanks are also due to the Institute for Earth Sciences of the Free
University which provided me with all the facilities necessary to my
work, and to Mr. A. Heine and Mr. C. van der Bliek who prepared the
diagrams.

Finally I should like to thank my friends and housemates Johnny and Maria
Walford, Graham Birtwistle, and Paul Clowney for their strong and
stimulating fellowship during these past years.






1. INTRODUCTION

1.1. The prcblem and the approach to it

Variations in the water level of open bodies of water such as rivers or the sea
generally induce corresponding variations of groundwater pressure in under-
lying or adjacent waterbearing formations. The propagation of these fluctua-
tions landinwards through the formations can be viewed as a particular case
of time-dependent groundwater flow, A study of this propagation can lead
to an understanding of the phenomena itself, and can yield information on
the hydraulic characteristics of the formations and on the nature of time-
dependent flow of groundwater.

Particularly interesting is the special case of the horizontal propagation of
periodic fluctuations of hydraulic potential emanating from a long straight
shoreline, This case can be treated analytically in a fairly straightforward man-
ner, and is in fact often encountered in practice, the most common example
being that of tidal fluctuations in coastal aquifers. It is this problem, in-
volving the transmission of periodic fluctuations, which has been selected
for detailed study, both theoretical and empirical.

As mentjoned above the propagation of periodic fluctuations is a particular
case of time-dependent groundwater flow, Now most theoretical treatments
of such flow are in effect based on two important assumnptions, namely that
the rate of flow is proportional to the gradient of hydraulic potential (Darcy’s
law), and that changes of storage of water are directly proportional to
changes of hydraulic-potential. This second assumption is commonly as-
sumed to hold both for elastic storage within the saturated zone and for
storage at the water table. To make analysis feasible a number of simplify-
ing assumptions must be introduced, involving the structure and hydraulic
characteristics of the formations, and the nature of the flow. Common exam-
ples of such assumptions are for instance: that the formations are homo-
geneous and isotropic; that the formations may be classified as either
aquifers or aquitards (the aquifers being highly conductive as compared to
the aquitards); that elastic storage within the aquitards is negligible; that the
effect of vertical flow within"thegaquifers is negligible; or that the flow is
either confined, semiconfined, or unconfined (i.e. completely, partially, or
not at all isolated from the water table). The question of when and where as-
sumptions such as these are valid has been receiving increasing attention in
recent years, especially with regard to the problem of radial flow to a
pumped well (Hantush, 1960; Neuman and Witherspoon, 1972; Wolff and
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Papadopulos, 1972; Streltsova, 1972; Herrerra and Rodante, 1973). The
problem with the introduction of assumptions of this sort is that although
they may well be valid for most cases, adequate arguments establishing

their validity are usually lacking, and as a result serious errors can be and
have occasionally been made in the analysis and interpretation of groundwater
flows. '

The theoretical analysis of the propagation of periodic fluctuations that is
given in the present work can be viewed in the light of the above discussion.
The general approach is to derive solutions for periodic flow based on Darcy’s
law and the linear proportionality of changes of water storage and hydraulic
potential. In addition the assumption of homogeneity and horizontal isotropy
of the formations is introduced, but as far as possible it is attempted to
avoid introducing at the outset any other assumptions involving the
geohydrological characteristics of the formations or the nature of the flow.
Further restrictions to various particular cases and solutions follow in the
course of the analysis. These include a general restriction to flow in
aquitards and thin aquifers, and others involving the flow type, and the
importance of elastic storage, water table storage, and vertical flow in the
aquifers. Because the analysis is kept general at the outset the range of applica-
bility of these various solutions can be defined in terms of characteristic
numbers, which are found as part of the results of the analysis. Thus for
instance a quantitative definition will be given of the terms “aquifer” and
“aquitard”, “thick” and “thin”, “confined” and “unconfined”. The net
result then of this general approach is a series of equations describing the
transmission of periodic fluctuations for various special situations, equations
whose ranges of applicability are delimited by exactly defined criteria. In ad-
dition it turns out that some of the equations previously derived by other
authors must be modified because various factors, neglected in their deri-
vation, are in fact not negligible.

The special value of such equations with clearly delimited ranges of
applicability is that they may be applied with good confidence to the ap-
propriate actual situations, A comparison of the theoretical and the empirical
results can then serve as a check on the validity of the basic assumptions
(Darcy’s law, proportionality of storage and potential, homogeneity of the
formations). Then, if it turns out that the basic assumptions allow for an
adequate description of the flow, application of the equations can yield use-
ful information on the hydraulic characteristics of the formations, and can
allow prediction of potential fluctuations,

In connection with the evaluation of the theory on the basis of empirical
results data from a number of different sites in the Netherlands and Canada
are presented and analyzed. These consist both of data on the propagation of
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periodic fluctuations and of data on the geohydrological characteristics of
the formations obtained by other means such as pumping tests. A
comparison of the empirical results with the theoretical predictions allows
an evaluation of the theory for cases of confined, semiconfined and un-
confined flow, and also serves as an example of how the theory can be
applied for the determination of the geohydrological characteristics of the
formations. It should be noted that measurements of periodic fluctuations
usually do not include data on the total amount of flow and therefore
cannot yield as much information about the characteristics of the formations
as pumping tests do.

1.2. Historical sketch

The discussion above presents the subject of this work and the approach that
is used in terms of the present-day status of the theory for time-dependent
groundwater flow, However it is also interesting to view the present w ork as
part of a historical process of increasing understanding of groundwater flow
in general and of periodic flow in particular. A series of authors have
published theoretical and empirical results concerned with the periodic flow
of groundwater. Their analytic treatment of the problem has sometimes
been more complete and has taken more factors into account then the
contemporary treatment of problems such as radial flow by other authors,
probably because the problem of periodic flow is much simpler to treat
analytically. Although the analysis that is given in this work is not directly
dependent on previous treatments of the problem, it is yet indebted to them,
for some of the empirical results that were obtained, and more importantly,
for the problems that were delineated. A description of the problem of
periodic flow would therefore not be complete without mention of at least
some of the more significant results that have been obtained to date.
Probably the first detailed analytical treatment of the problem of

periodic fluctuations is the thesis of Steggewentz (1933), in which a theory
is presented for the propagation of periodic fluctuations through unconfined
or semiconfined aquifers. Steggewentz assumed that storage of water through
compression effects is negligible and therefore his theory is only applicable -
for cases where water table storage is dominant. The model he used falls short
in some respects, but recognized the importance of vertical flow near the
water table for unconfined flow — a point which has only recently gained
general recognition (Streltsova, 1972, and others). Equations similar to those
of Steggewentz were derived by Ernst (1962, p. 126) on the basis of
Boulton’s (1954) model of delayed yield from storage at the water table.
Jacob (1940, 1950) considered the problem of tidal fluctuations in a
completely confined aquifer, taking into account the compressibility of
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the water and the solid medium. He derived expressions for the propagation
of the fluctuations through the inland part of the aquifer. Bosch (1951)
presented an extension of Jacob’s theory by including the effect of leakage
to the water table. He did not take into account the effect of compressibility
of the confining layer and of movements of the water table. The theory of
Bosch was in turn extended by Wesseling (1959) to take into account the
vertical displacements of the water table. Wesseling’s analysis indicates that
for semiconfined flow Bosch’s assumption of a stationary water table is
justified, and also indicates that loading effects due to water storage at the
water table are negligible.

The effect of the compressibility of the confining layers was first considered
by Edelman (1953) and later on, independently, by Ernst (1962, p. 138). Both
authors arrived at the same expression for the propagation of periodic
fluctuations through a confined aquifer, including the effect of flow and
storage in the confining layer.

On the whole these various authors have not given a detailed d1scuss1on of the
applicability of the equations which they derived. As a result the relation-
ships between the various solutions is not clear, and at times the equations
have been improperly applied to practical situations.

While the theory for periodic flow was being developed, empirical work was
also done, usually with the two related purposes of checking the validity of
the theory, and of investigating to what extent the measurement of periodic
fluctuations could yield information on the hydraulic charactenstlcs of the
formations.

Ferris (1951) measured the potential fluctuations due to daily fluctuations

in the state of a river. He applied Jacob’s theory to calculate the ratio of -
transmissibility to storage coefficient. Timmers (1955) measured the
transmission through an aquifer of fluctuations due to seasonal changes in
the stage of a river. He analyzed the data on the basis of the theory of Stegge-
wentz (1933) and obtained values for the hydraulic characteristics of the
aquifer that were in good agreement w ith the expected values. A number

of carefully carried out investigations of tidal groundwater fluctuations were
reported by Wesseling (1960), van Eyden, Kuper and Santema (1963), and de
Ridder and Wit (1965). Their results, mostly analyzed on the basis of the
theory of Bosch (1951), agree at best approximately with the results of pump
tests carried out in the vicinity. Carr (1971) applied Fourier analysis to show
that the tidal fluctuations in wells can be separated into a number of sinusoidal
components and that the propagation of each of these components was at
least approximately consistent with Jacob’s (1950) theory for confined

flow.

In general it may be said of these and other empirical results that although
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agreement with theory is good in some cases, it is not good so in other cases,
and on the whole no satisfactory explanations have been advanced for the
discrepancies, )

In view of the preceeding historical sketch the purpose of the present work
can be stated once more, It is firstly to develop a theory for the propagation
of periodic fluctuations which integrates and extends the previously
developed theory, and secondly to present empirical data on the basis of
which the validity and usefulness of the theory can be evaluated.

1.3.  Summary of chapter contents

The material is arranged in a natural sequence leading from development of
the theory through reduction and presentation of the data to a final
comparison of theoretical and observational results. Some of the chapters
may however be read independently of the others.

In chapter 2 the basic equations for time-dependent flow of groundwater are
presented and applied to the case of simply periodic flow, It is shown that
for thin aquifers there is a special solution which does not require detailed
knowledge of the boundary conditions.

In chapter 3 this special solution for thin aquifers is derived and analyzed in
detail for confined, semiconfined, and unconfined flow. In addition the
problems of boundary conditions, entry resistances, and reflection at an
internal boundary are discussed.

In chapter 4 methods of reducing and analyzing d ata for periodic fluctuations
are discussed. This chapter may be read independently of the others.

In chapter 5 empirical data from various sites is presented and summarized.
This chapter is included for completeness, and is not essential to an under-
standing of the other chapters.

In chapter 6 the theoretical results are summarized and evaluated on the
basis of the empirical data. For the reader whose main interest is the ap-
plication of the theory for periodic flow this chapter probably gives suf-
ficient information. '






2 — THEORY FOR PERIODIC FLOW OF GROUNDWATER

2.1. — Introduction

The transmission of periodic fluctuations in hydraulic potential through
aquifers has been analyzed by various authors as summarized in the in-
troductory chapter. Some of the more significant of these treatments
are those of Steggewentz (1933), Jacob (1950), Wesseling (1959), and
Ernst (1962). These and other authors have solved the problem of pe-
riodic flow for particular cases of confined, semiconfined, and unconfined
aquifers, but their analysis in general does not clearly define the range of
validity of the various solutions or the relationship between them. In
view of this consideration the main purpose of this and the following
chapter can be stated. It is to present a theory for the propagation of
periodic fluctuations through a system of horizontal aquitards and thin
aquifers, This analysis is based on Darcy’s law, and the assumption that
changes of storage of water within the aquifer or at the water table are
directly proportional to the changes of hydraulic potential. It will yield
some new or modified results, but its most important result is a more
general theory of which most of the previously derived results are special
cases. In this manner the relationship between the various particular solu-
tions can be made clear, and quantitative criteria can be derived which
define their range of validity. In this chapter the general equations gover-
ning the-flow are derived. The application of these equations for various
particuldr cases of confined, semiconfined, and unconfined flow is left
for the following chapter. '

2.2, - The hydrbstratig%aphic model

The hydrostratigraphic model for which a general solution will be sought
is that of a three-layer system bounded above by the water table as sche-
matized in Figure 2—1. The bottom layer is assumed to be thick and of
low permeability, so that it isolates the system from the effects of flow
at deeper levels. This model is chosen because it is the simplest configura-
tion which can represent both confined and unconfined conditions.

The layers 1, 2, and 3 have thicknesses D; = 4,75 horizontal hydrau-
lic conductivities Kj, vertical hydraulic vOnductivities Kfj', and specific
storage coefficients S;', where the subscript “j”” stands for the number of
the layer and may theérefore take the values 1, 2, or 3. (The specific stor-
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age coefficient S] must be distinguished from the storage coefficient for
the entire thickness of the layer, S; .) These quantities are assumed to be
constant throughout, i.e. the layers are assumed to be homogeneous and
of constant thickness. Except for the limitation that layer 3 be a thick
aquitard, these quantities may take a wide range of values. Thuslayer 1
may for instance be an aquifer or an aquitard, or may be very thin, or
absent altogether. In the course of the analysis one further restriction
will be introduced namely that if a layer is an aquifer it must be thin. The
terms “thick”, “thin”, “aquifer”, and “aquitard” will be more precisely
defined in the course of the analys1s

7o - - 7 7« WATER
ofTA" /////‘/ TABLE
Z, “*

Zs --*— THICK
W< AQUITARD

e

X
Figure 2—1 The hydrostratigréphic model

The average height of the water table, or, more accurately, of the top of
the zone of saturation, is taken at z = z_, The specific yield, or storage
coefficient at the water table, is denoted by S and will be assumed
constant,

2.3. — The basic equations
2.3.1. — The flow equation

‘The basic differential equation describing the time-dependent flow of
groundwater in a saturated porous medium has been derived by Cooper
(1966), Verruijt (1969), and others, In the following analysis horizontal-
vertical anisotropy is taken into account, and the treatment is restricted
to the case of two-dimensional flow. The equation can then be written:

K]-—hJ +Klazh] Jg—}:]. 2-1

where hj is the hydraulic potential, and the subscript “§” refers to the
number of the layer as above. This form-of the equation depends on the
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assumption that Darcy’s law holds and that the elastic storage of water
varies linearly with the hydraulic potential. A detailed discussion of
these and other assumptions involved in the derivation of the equation
has been given by the authors mentioned above.

2.3.2. — Flow and storage at the water table

Vertical gradients of the hydraulic potential in the saturated zone di-
rectly below the water table induce flow to or from the water table
(in accordance with common practice the term “water table” is used
here in place of the more accurate term “top of the zone of saturation”.)
.If the water table is not held constant through drainage systems or the
like, such flow results in the filling or emptying of pores and a consequent
vertical movement of the water table. The processes involved in such
movements of the water table are complex. For the present ourpose it
will be assumed in accordance with common practice (see for instance
Childs, 1969) that the rate of vertical movement of the water table is
directly proportional to the vertical flow within the saturated zone at
the water table, If the instantaneous height of the water table is denoted
by z,, this linear relationship may be written as :
—K1 dh, f _ s a_h_l_
2z =z, 0 at Z=Zy, )
where S is the specific yield or coefficient of storage at the water table,
and use has been made of the fact that the rate of change of potential at
the water table is equal to the rate of change of height of the water table.
This relationship can be written more simply if the displacements of the
water table are very small, for then the left and right hand sides of
equation 2—2 may be expanded as follows:

oh oh 9%h
K" =-K,' — ~-K'< —3 (24-2,) 2-3
9z z=zw 9z z=z T 9z? z=z,
- oh oh 9%h
Sy —>I = 8, —*I +8, —2 (zy,—2,) 24
° 3t z=z °at z=z, ° 3zdt z=z, 0

The terms on the right side of equations 2—3 and 2—4, involving the
displacement of the water tabel (z,,—z ) are negligible if this displacement
is very small. For such cases the equation for flow and storage at the water
table may be written:

oh

_K,' =5 Oy 2-5
1 9z z=z0 0ot z=z,
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Equation 2—5 can be considered more generally to describe also those
cases where the water table is fixed, as by drainage systems, or where there
is no storage at the water table. In accordance with the previously implied
definition of the specific yield S, as the ratio between the flow to the
water table and the rate of change of potential at the water table these
two cases can be described through equation 2—5 by putting S, equal to
infinity or zero respectively. In this manner these special cases of flow and
storage at the water table are included in the general analysis.-

2.3.3. — Boundary conditions

The boundary conditions on the horizontal planes between the layers
basically involve continuity of flow and potential. The stipulation that
layer 3 be a thick aquitard can be expressed by the condition that the
fluctuations in potential become negligibly small at depths far below
z,. With inclusion of the boundary condition at z expressed by equa-
tion 2—5, the boundary conditions at the horizontal boundaries can be
written:

oh oh
z=z, : _K1I —L =g 1L 2—6a
9z 0 5t
=z h1 = h2 2—6b
oh oh :
=z, : K'—Ll=K' 2 2-6¢
1 L3z 2 9z
=z, : h, = h, 2—6d
oh oh
. e R e
=2, 0 K 2 =K 2 2-6e
Z—— 00 h. =0 2—6f

Since the analysis is to be restricted to the case of two-dimensional flow,
the remaining requirement for a complete description of the problem is
a specification of the potentials at the two ends of the region of interest.
These may in general be written as:

hj (x=x,z,t) =u(z1), - 27a

hj (x=x,,z,t) = v(z, 1), 2-Tb
where the functions u (z, t) and v (z, t) are periodic in time. For many
cases one of the positions x, or x, can be taken at infinity and the
potential at that point can than be required to be vanishingly small.
A general solution of the problem described by equations 2—1, 2—6,
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and 2—7 will not be attempted here. As will be shown, a general form
satisfying equations 2--1 and 2—6 can be found in a fairly straight-
forward manner, A special solution will then be selected which is
applicable for the case where the detailed forms of the functions u (z, t)
and v (z, t) in equations 2—7 do not appear in the solution. Observations
indicate that such a solution is indeed applicable for many of the cases
encountered in practice. The criteria for the cases where the complete
solution is closely approximated by this special solution will be estimated
on the basis of a general solution for the simple but representative
special case where layer 2 is an aquifer and layers 1 and 3 are completely
impermeable.

2.3.4, — Linearity

The equations governing the flow are all linear in the potential h] (x, z, t).
This property of the equations implies that different types of
flow such as flow to a pumped well, seasonal flows, and various periodic
flows occur superimposed on each other but independently. (This
conclusion is of course only valid if the total displacements of the water
table are small compared to the thickness of layer 1.) Each flow type
can therefore be treated separately. In particular, a complicated periodic
motion can be considered as consisting of a number of sinusoidal compo-
nents of various frequencies each of which can be separately considered.
The analysis for periodic flow of this and the following chapter will be
restricted to the consideration of a single sinusoidal motion, and the
potential functions h:| (%, z, t) will refer only to the changes in potential
due to one such motion. Because of the linearity of the equations the
“background” potential, whether constant, or varying with time or
place, need not be considered. '
One other useful consequence of the linearity of the equations is that it
allows the use of a complex potential function in the form h; = Q; +iR;
where i is the square root of minus one, and the real quantities Q; and

. are respectively the real and imaginary parts of h.. From the fact that
the equations are linear it follows that if h. satisfies’the equations then so
do Qj and R:| separately. The actual hydraulic potential (a real function)
may ‘then bé defined as either the real or imaginary part of the complex
potential h.. The advantage of such a complex representation is that it
allows a compact representation of a periodic function and its derivates.

2.4. — Solution

A solution for equations 2—1 and 26 will now be -sought for periodic
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flow. One important assumption is introduced at the outset, namely
that of the separability of the vertical and horizontal potential distributions,
expressed as:

hj(xzt) =gj(z t) f- (x, 1) 2-8
Substitution of this form of h:| m the basic differential equation (equation
2-1) gives:

g 9 o1,

K/ bl YR ~Kj 4 +§ % 29
2w = a+? I at
5 f

Since one side of this equation is independent of z, and the other side
independent of x, they must both be a func’uon of t only, which for
convenience at a later stage is written as K] qJ (t). Then equation 2—9
gives:

azf. ' of.
K]. + Kj'q*f; _a_i 2—-10

s/ 25
Ki - K q%g = 5/ 2-1
The assumption of separability thus leads to separate equations for the
horizontal and vertical potential distributions, related through the function
4 (0.
A further simplification is possible for two instances, namely those of
flow in thin layers, and of periodic flow in layers of any thickness. If a
layer is thin the vertical potential distribution across it will be always in
a state of quasi-equilibrium, dependent only on the vertical flow through
the upper and lower surfaces, but independent of the changes of potential

within the layer. In terms of equation 2—11 this condition can be expres-
sed as:

og: az%
! - ' v
ISj §-|<< | K] ar] 2—-12

This case of flow in thin aquifers is included here because it will yield a
general equation for such flow which will be useful for interpreting the
empirical results for periodic flow.
If the flow is simply periodic, i.e. purely sinusoidal in time, the function
? (z, t) can always be written as a function of z only. Then condition
—12 holds automatically whether the layer is thick or thin. Moreover it
then follows from equation 2—9 and the subsequent reasoning that for
such periodic flow § becomes independent of time. Thus for any kind
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of flow in thin layers, or for simply periodic flow in layers of any thick-
ness, condition 2—12 holds, and equation 2—11 then becomes:

o

— . 2 0 = —

57 g gJ 0 2-13
Equations 2—10 and 2—13 combined with equations 2—6 can now be
solved for general forms of the horizontal and vertical potential
distributions as will be shown in the next sections.

2.4.2. — General forms of the horizontal and vertical potential distributions

Equations 2—6b and 2—6d, involving the continuity of the potential on
the boundaries z=z , and z=z,, give:

g )fx) =g (z) f,(x1) 2-14
g (2,)f, (x1) = g, (z,) f,(x1) 215

It follows that f_, f,, and f; are proportional to each other and in fact it
is possible to put g, (z,) =g, (z,) and g, (z,) = g, (z,) so that:

f, (x,t) = f, x,n =1, (x,t) = f(x,1) 2—-16

This horizontal potential distribution f{x,t) is governed by equation
2-10. For purely sinusoidally varying periodic flow the general solution
for this equation can be written (in complex representation):

—px_ iwt

px
fixt)=(Aje + Ae e 2-17

where A, A, and p are complex numbers, p can be written as:
p=n+im, . 2—-18

where n and m are real numbers, and n can be defined to be always
positive. .
Equation 2—13, governing the vertical potential distribution, has a
general solution of the form:

qu

q:z —
gj(z) = Bje T+B,e 2-19

]
With the boundary conditions given by equations 2—6 this general
form of g:(z) can be further specified. (Because the solutions are still
very general they are necessarily complicated in form, and therefore for
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the sake of a compact presentation the steps in the analysis which in-
volve only algebraic manipulation are not given in detail.)

As was done for p the real part of q; can always be chosen to be
positive. It then follows from equation 2—6f that:

g,(2) = B,;«q3 ’ 2-20

which can be written:

945(z-2,)

8,(2) = g,(z,)e 2-21

With equation 2—16, equations 2—6d and 2—6e, involving the continuity
of potential and vertical flow at z=z, give:

Z
Blzeqz >+B,e 2=g.(z,) 2-22
B o _p o b% %K g,(z,) 2-23
12 22 q2K2' 3

Solution of equations 2—22 and 2—-23 for B, and B, , and substitution
of the results in the general form of gj(z) given by equation 2—19 gives:

a.K.' .
g,(®= 33(22) {cosh[qz(z—z2 )]+ q3 K3 - sinh [qz(z—zz)]} 2-24
2772
Equations 2—6b and 2—6c¢, involving continuity of flow, and potential
at z=z_, together with equation 216 yield (withD, = z, _Zz),:
9,2, 47 _ 9K,
B, e + B, e = g,(z,)[cosh(q, D)+ oK ;sinh (q, D))} 2-25

, R R

’

: 9K,
[sinh(q, D, )+ q—E—rcosh(q2 D))} 2-26

11 272

q,z -q,z
B,e''-B,e =g

1

Solution of these equations for B, and B 21 and substitution into the
general form of gj(z) yields finally:

K/’
8,2 =8,(z,) {cosh[q, (s2,)) 0shq,D,) ¥ 22 sinh(a,D,)] +

2

K.’ K' .
+sinh(q (z—z,)] [93 K3 ;cosh(q, D,) + (_1_2_1.?2_smh(q202)]} 2-27
q q

11 1 1

General forms of the horizontal potential distribution f(x,t), and the
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vertical potential distributions g (2), g,(2), and g,(z) have now been
found and are given by equations 2—17, 227, 2—24, and 2—21 respec-
tively. It should be noted that the derivation of the form of the vertical
potential distributions has not involved the assumption that the flow is
periodic.

2.4.3. — The general solution

The solutions forp, q,,q,, and q, can be found through application of
equation 2—10 and of equation 2— 6a for flow and storage at the water
table. Substitution of the general form g, (z) as given by equation 2—27 into
equation 2—6a gives (after division by g, (z,), and rearrangement of the
terms):

‘ q,K, ' of
[cosh(q, D, oK. D)Ilq,K, smh(q1 D )f+ 8 cosh(q, Dl)— ]+

22

| s of
+[q,K,'sinh(q,D,) + q,K;’ cosh(q, D, )][cosh(q,D, )f + q° = smh(qlDl)-a—t] =0

1™
2--28
This equation can be viewed as giving a relation between the q:'s and p (im-
plicit in the function f(x,t)). It can be reduced to simpler forms for a number
of special cases as will be shown in the next chapter. Substitution of the
general form of f{x,t) as given by equation 2—17 into equation 2—10 gives:

Kj'qj2 = lej, - ij2 2-29
Equations 2—28 and 229 together form a system of four equations in
four unknownsq,,q,,9,, and p. However, the hyperbolic functions which
appear in equation 2—28 are periodic with a period of 27i. Therefore there
may be many sets of valuesq, , q,, and q, which satisfy equation 2—-28.
For each of these sets equatlon 2-29 wﬂl also yield a different value of p.
Thus the general solution can be written:

hxz0) = 2 gj(r)(z)ffr?(x,t) 2-30

where the superscript (r) denotes the various potential distributions corres-
ponding to the various sets of q; and p which satisfy equations 2—28 and
2-29. A complete solution would be obtained if the sum in equation 2—30
satisfies the boundary conditions expressed by equations 2—7. Such a
complete solution for all possible cases will not be attempted here. For
many practical cases of periodic flow one special solution of equations
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2-28 and 2—29 can be seletted as giving a good approximation to the
complete solution. This special solution and the criteria for its applicability
will be considered next.

2.4.4. —  The general solution for a single layer with no vertical flow
through its upper or lower surfaces

From the general three-layer case a special solution will be selected and
analyzed in detail. For the purpose of illustrating the selection of this
solution the case will be considered here where layer 2 is an aquifer and
layers 1 and 3 are completely impermeable (K K = Q). If the aquifer
is supposed to extend indefinitely in the x-dlrectlon the boundary con-
ditions (equations 2—7) may, for the simply periodic case, be written:

iwt
h,(x=x_,z,t) =E(z)e 2—31la
h, (x =0, z,t) remains finite 2--31b

WithK "=K,' = 0 equation 2—28, multiplied through by q K, 'q, K2'
gives:

q,’K '231nh(q2D2)S af(’: 2 =0 2-32
Since K2 s 845D, , and 0f/ot are not zero, this equation has the solutions:

q,D, = inr 2—-33a
where r =0, 1,2 ..., 2—-33b

and then equation 2—29 gives:

S, #*rf
p =iw2 + 2-34
K, KDy

wherec, = D, /K2' is the vertical hydraulic resistance of layer 2.
By equation 2—24, the vertical potential distributions have the form:

gz(r)(z) = gz(r)(zz)cosh[im(z -z, )/D2] 2-35a

gz( )(z )cos[m(z z,)/D, ] 2—-35b
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Atx=x_,8 (z) canbe taken equal to E (z), Thus, with equation 2—30
and 2— 35b

z gz(r)(zz)cos[nr(z— z,)/D,] = E(2) 2-36

=0
(Since cos (—x) = cos(x) the negative values of r need not be included).
The sum on the left hand side of this equation can be viewed as a Fourier
expansion of E(z), and in fact equation 2—36 leads to:

© . _1 <
g (z) = 5—2 f22 E(z)dz 2-37a
and forr# 0
()(z )———f E(z)cos[m(z — z,)/D, 1dz 2-37b

From equation 2—31b it follows that the horizontal potential distributions
have the form (based on equations 2—17 and 2—18):

f( )(x t) = A exp {—nr(x—x )+ 1[wt—mr(x—x )]} 2-38

The complete solution has the form:

h,(xz,H) = iogz(r)(z)f(r)(x,t) 2-39

where gz(r)(z) and f(r)(x,t) are given by equations 2—33 through 238,
Here again the summation may be restricted to nonnegative values of

1, since p = n + im is determined by r* (equation 2—34).

Thus, for this special case of a single isolated layer (in fact a completely
confined aquifer) a general solution has been found. The assumption of
separability of the variables, introduced through equation 2—8 is justified
at least for this special case since it permits a complete solution.

If certain conditions are satisfied the special solution for 1= 0, i.e.

q,D, =0, closely approximates the complete solution, as will be shown
next. From equation 2—28 it follows that the larger n , the more rapidly
the corresponding part of the total fluctuation is damped out with dis-
tance away from the boundary x = x, . Now, equation 2—34 gives:

no_2 = wS,'/2K, 2—40a

1
m

2K2D2 c,

wSs,' w2r?
+

2
n 2 T # 0 = {. 252 2
r(r#0) ‘2K2) (2K2 D, cz) } 2-40b
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It follows that n is much smaller than n (r # 0) if:

wS,c, << 7 2-41

(Here S, = SZ'D , @s previously defined). Thus if condition 2—41 holds,
the fluctuation corresponding to r = 0 is much less quickly damped out
with distance away from the boundary then the fluctuations corresPondmg
tor#0. :
The solution corresponding to 1 = 0 closely approximates the complete
solution in the region where:

( )( )f( )(x ) 1>>| E gz( )(z)f( )(x 3] 2—42

r=1

r r
Equation 2--36 implies that Az( ) = 1. The amplitudes 32( )(zz) can be
further determined through equation 2—37. The function E(z) appearing
in the boundary condition and in equation 2—37 can be written:

E(z) = E + o(2) 2-43

where E is the average value of E(z) over the thickness of layer 2, and
where the average value of &(z) is zero. Equatlons 2—37 then give:

g.z( )(z )-——f E(z)dz= E E 2—44a
Z
and forr 2 1: >
gz( )(z )——-—f e(z)cos[nr(z ~ z,)/D, 1dz 2—44b

2
It follows that if the vertical potential differences at the boundary
Xx=x, are small, i.e.

|e(z)|<|E; 2-45

then (withr = 1):
Igz()(z )|<|gz( )(zz)l ' ' 2-46

(If condition 2—45 holds more strongly i.e.a “<<” sign substituted for
the “<” sign, than so does condition 2—46).
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Considering for the moment only the solutions corresponding tor =0,
and r= 1, condition 2—42 can be written: »

18, Oz T 1551y P )e | g

! .
If condition 2—46 holds for gz( )(zz) in particular, condition 2—47 is
satisfied if" :

n —n ) (x—x
e( ! 0)( ! >>1 2—-48

If condition 2—41 holds, then n_ is much greater than n_ and is in fact
approximately equal to m (K, D c )_ . Then with e’T = 23 reckoned
as much greater than unity, condition 2--48 can be written:

[SICN

x—x, >(K,D,c 2-49
Thus if the aquifer is sufficiently thin so that condition 2—41 holds,
and if the vertical potential differences at the boundary are small
(conditions 2—45 and 2—46 hold), then at points sufficiently far away
from the boundary (satisfying condition 2—49), the special solution for
1= 0 closely approximates the general solution. In fact the equation for
the potentia.l distribution can then be written in the form:

-pX iwt
h,z(xzt) Al | 2-50a

where A, =g2( )(zz) and p is given by:
- inz' K, 2--50b

Of course, if the vertical gradients at the boundary are very small (i.e.
conditions 2—45 and 2—46 hold more stringently), then condition 2—49
can'be relaxed accordingly. In practice the vertical gradients at the
boundary are usually known to be small, either from direct measurement
or from experience of similar cases. Also, the more “thin” the aquifer
(ie. the more stringently condition 2-~41 holds), the less significant the
vertical gradients are likely to be. 1

If the layer is isotropic (K,"=K,), then the quantity (K,D c, ) in
condition 2—49 equalsD,, and condition 2—49 then gives a result
similar to that of Hantush (1962) and others for flow to a partially
penetrating well in an isotropic aquifer. Hantush shows that for such
flow the vertical potential gradients in the aquifer due to the effects of
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partial penetration of the well become negligible at a few aquifer
thicknesses from the well. Condition 2—49 indicates that not the aquifer
thickness D, , but the quantity (K, D, c,) i=D (K /K, 2 3 is the
decisive factor.

It should be noted that when the complete solution is approximated by
the solution for q,D, = 0, as expressed by equations 2—50, then the
amplitude is determined by the average of the potential at the boundary.
For the rest the solution is'then independent of the detailed form of
E(z), the vertical potential distribution at the boundary. Thus this
solution can be applied even when no detailed information is available
for the potential differences at the boundary. In particular the horizontal
propagation of the fluctuations through the layer is then described by
the propagation parameter p= n + im as given by equation 2—50b, which
depends only on the fact that the fluctuation is sinuosoidal with

angular frequency w.

2.5. The solution for points far away from the boundary and thin
aquifers

2.5.1. — Selection of the solution

In the previous section a general solution has been found for the special
case when layers 1 and 3 are completely impermeable. The problem
remains of finding solutions for the more general three-layer case. A
complete solution for this case will not be attempted; but the solution
for the one-layer case indicates that it may be possible to find a good
approximation to the complete solution for points far away from the
boundary if the aquifers are thin.
In fact it was found that for one layer case the solution with q,D,=0
(r = 0) dominates at points far away from the boundary satlsfylng
condition 2—40.

1

x—x > (K,D,c,)? 2-51
if the vertical potential gradients at the boundary are small and if the
aquifer is sufficiently thin, i.e. if the aquifer satisfies condition 2—41,
which may be written:

wS,c, <1 , 2-52

0
The horizontal propagation parameter p( ) which was found as part of
the solution for ¢, D, = 0 is independent of the detailed form of the
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boundary condition and can therefore be applied in practical situations
even when there is no detailed information of the boundary conditions.

Now this result for the one-layer case indicates that similar.  solutions
may exist for the three-layer case if the aquifers (layers 1 or 2 or both)
are “thin””, When the three layer case is restricted to that of a thin
aquifer bounded above and below by thick aquitards, then it is very
similar to the one-layer case, and in fact there is no clear break between
them since the one-layer case is then approached more and more closely
as the aquitards become less and less conductive. When the flow in layer
2 is not isolated from the water table, i.e. when layer 1 is thin or absent
altogether, then there is vertical flow through the upper surface, and

the solution for the one-layer case found in the previous section does
not apply, even approximately. However, it may be safely assumed, that
for such cases also, the effect of vertical potential differences at the
boundary should be small at points far away from the boundary if the
aquifers (layer 1 or 2 or both) are thin. In general then, it should be
possible to find a solution for the three-layer case applicable to the
region far away from the boundary. This solution, corresponding to the
solution q, D= O for one confined layer, can be sought through the
condition that if layer *“j* is an aquifer then:

lquj <1 253

This solution should include the solution q, D, = 0 as a special case when
K, '=K3' = 0. It may also be expected that the other solutions for the
three-layer case not satisfying condition 2—53, will then correspond to
the solutions with q, D, =inr (r a nonzero integer) for the one-layer case—
solutions which were found to be negligible at points far away from the
boundary.

A rigorous proof of these suppositions will not be given here. It will

be assumed that solutions obtained through condition 2—53 do indeed
give a good approximation of the complete solution for points far away
from the boundary when the aquifers are thin. Empirical results may
help to corroborate the validity of this assumption for practical cases.
Further analysis will be restricted to the derivation of solutions satisfying
condition 2—53 for the aquifers; From here on the symbols p and q;
will be used to refer to this special solution only, and the other possible
solutions will not be further considered.

2.5.2. — Definitions of the terms “aquifer”, “aquitard”, “thick” and “thin”’

The terms “aquitard” and “aquifer” are relative and can only be applied
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when there is a large difference of hydraulic conductivity between the layers.
A layer is an aquitard if the horizontal flow through it is negligible com-
pared to that in the much more conductive aquifer. The term aquitard can
for the present purposes be restricted to those layers in which the flow is
largely or completely vertical. In terms of equation 2—29 this restriction

can be conveniently expressed through the condition:

) ; 2 -
IKyqi® 1 >>1K;p*! 2-54
for then equation 2—29 reduces to:
2 . - & _
g (aquitard) 1wSJ /K] 2-55

Condition 254 will be taken as the defining condition for an aquitard
because it is consistent with the earlier definitions, and permits the simple
solution for the number q; expressed by equation 2—55. Condition 2—54
may also be interpreted as implying that the horizontal distance through
which the fluctuations are transmitted in the aquifer (proportional to

P 1) is much larger than the vertical distance through which the fluctu-
ations are transmitted within the aquitard (proportional to q-"l). \
With this result for q; the terms “thin™ and “thick™ as applied to aqui-
tards can be further specified. If for an aquitard:

I Qij <1 756

then a significant part of the fluctuation is transmitted vertically through
the layer. With equation 2—55 this condition can be replaced by:

ijcj <1 2-57

Here the square of the quantity qu- has been used because condition
2—57, which can be taken as the de'l”inition of a “thin” aquitard, then
becomes identical to condition 2—52 defining a “thin” aquifer, Condition
2—57 may thus be taken as the general definition of a “thin” layer for
the purposes of the present analysis.

Similarly the condition:
| quj [>> 1 2-58

implies that the fluctuations are not transmitted vertically through the
layer to a significant extent. (Here use is made of the fact that for
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aquitards the real and imaginary parts of q. are equal, as shown by
equation 2—55). In fact, condition 2—58 can be replaced by the less
restrictive condition (analogous with condition 2—57):

This condition will be taken as the definition of a “thick’ aquitard for
the present purposes.

The terms “thin” and “thick™, as applied to aquitards, have now been
defined relative to the vertical penetration distance of the fluctuations.
For this reason not only the thickness of the layers is involved in these
definitions, but also the hydraulic characteristics of the layers, and the
frequency of the fluctuations. '
The condition that layer 3 be a thick aquitard, which was introduced at
the outset, can be quantitatively expressed through conditions 2—54 and
2--59.

The fluctuations do not penetrate horizontally through the aquitards to
any significant extent. Therefore, if the effects of the vertical potential
gradients at the boundary are negligible in the aquifers they will certainly
be so in the aquitards. The special solution obtained through condition
2—53 thus remains applicable for points far away from the boundary

if the effect of flow in the aquitards above and below the aquifers is
considered. In fact equation 255 already gives the corresponding
solution for g of the aquitards.

2.5.3. The general form of the special solution

If a solution for the flow in aquitards and thin aquifers satisfying condi-
tion 2— 53 can be found it will have the general form expressed by equa-
tions 2—8, 2—17, and 2—19:

hj(x,z,t) = gj(z)f(x,t) 2-60a

=, B0 Ty, M e 2-60
As will be shown in the next chapter such a solution does indeed exist.
It thus turns out that the assumption of separability of the variables as
expressed through equations 2—8 (or 2—60a) is applicable for the flow
in aquitards and thin aquifers, This theoretical result may be viewed as
being due to the fact that the flow is either largely horizontal (in the
aquifers), or largely vertical (in the aquitards).
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Through equations 2—28 and 2—29 solutions for p and q; can be found -
without reference to the potentials at the boundary other than that they
are periodic in time. The main purpose of the analysis, which is to find
equations for the horizontal propagation of the fluctuations, will thus be
obtained. Various particular solutions for p and q are discussed in

detail in the next chapter,



3 — SOLUTIONS FOR CONFINED, SEMICONFINED, AND UN-
CONFINED FLOW IN THIN AQUIFERS

3.1 — Introduction
3.1.1. — Purpose

In the previous chapter equations have been derived for periodic flow in a
three-layer system, such as illustrated in Figure 3—1., A general solution
for these equations has not been given, but it was found that if the
aquifers are thin then for points far away from the boundary a particular
solution can be found which closely approximates the complete solution,
No rigorous proof of this conclusion has been given, but arguments which
support it have been presented on the basis of a general solution for the
case of one isolated layer with no flow through its upper or lower sur-
faces.

In this chapter these special solutions, applicable for points far away
from the boundaries, and thin aquifers, will be derived and analyzed in
detail for various special cases of confined, semiconfined, and unconfined
periodic flow. Where feasible explicit solutions will be given, with special
emphasis on the equations describing the horizontal propagation of the
periodic fluctuations. The conditions describing the range of validity

of the solutions will be given as completely as possible, but for a

detailed analysis of some of these conditions the reader will be refer-

red back to the previous chapter. The approach is similar to that of Hantush
(1960) for radial flow to a pumped well, except that in the present case
the effect of vertical flow within the aquifer is also taken into account.
The problem of radial periodic flow (see Williams et al., 1970), and of
periodic flow in thick aquifers (Carrier and Munk, 1952; Diprima, 1958)
will not be considered.

The main purpose of this chapter is to derive equations for the propa-
gation of periodic fluctuations whose range of validity is carefully circum-
scribed, so that they may be applied with confidence to the appropriate
practical situations. The theoretical predictions which this analysis

yields, when compared with empirical results, can give a trustworthy
indication of the extent to which the basic theory that is used can indeed
describe the flows encountered in practice.
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3.1.2. — The hydrostratigraphic models and the general equations

The hydrostratigraphic model for which the theory has been developed
is described in the previous chapter, and is reproduced in figure 3—1.
Layer 3 is a thick aquitard which acts as a base isolating the flow in
layers 1 and 2 from flow at greater depths.

_ T L WATER

1, THICK .
Wemu.m

Figure 3—1 The hydrostratigraphic model

For simply periodic flow the solutions for the potential distributions
have the form (equations 2—60):

hix.z,t) = g(If (x.t) 3-1a

iZ —q; 2 X —px_ iwt
U 4B b )(Alep +A e p)e 3—1b

= (Bl i 2j 2
where h% is the hydraulic potential in layer j. The vertical potential
distributions g,(z) are given more exactly in equations 2—21, 2—24, and
2-27, which incorporate the solutions for the quantities B ; and B, ..
The equations governing the quantities q; and p have been glven in
chapter 2 (equations 2—28 and 2-29). T]hey can be written:

Igp + K] 1coS 3-2

K,’
[coth(q,D,) + 2] [K,'q, f+§, coth (q,D, )—]+
q2K2

7 ! S f
+[q,K," +q,K," coth(q,D,)][coth(q,D ) f+ q—J’K——,ra—t] =0 3-3

171

Together they form a system of four equations in the four unknowns
q,,4,,9,, and p (implicit in f), and a complete solution is in principle
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possible. (For the meaning of the symbols used in these and the fol-

lowing equations the reader is referred to chapter 2 or to the list of
repeatedly used symbols given in the appendix.)

However, since the function coth (q D.) is periodic with period i, there
may be many setsof q,, q - and q, winch satisfy equation 3—3, and there-
fore many solutions in the form of equation 3—1. The general solution is
then some linear combination of all these particular solutions. As has

been argued in the previous chapter, the solution derived through the
condition that for the aquifers:

{ q]D] <<1 34

gives a good approximation to the general solution for points far away
from the boundaries if the aquifers are thin and if the vertical potential
differences at the boundaries are not large. The region far away from
the boundary at say x = x_is described by the condition (2-51):

2 —
X—x > (I% cJ) | 3-5
where layer " denotes an aquifer and x increases away from the
boundary. This condition can be relaxed if the vertical potential dif-
ferences at the boundary are very small. A layer “§”, whether an aquifer
or an aquitard, has been defined as thin if (cond1t1on 2--57):

ijcj <1 3-6
For a more detailed discussion of these conditions and their derivations
the reader is referred to chapter 2.
Solutions of equations 3—2 and 3—3 will be sought subject to condition
3—4. The q:D: found in this manner are only valid solutions if they do
indeed satisfy condition 3—4, and in fact this requirement leads to a
restriction for the range of applicability of the solutions. Conditions
3-5 and 36 give additional restrictions.
The analysis will only be carried out for two special cases, namely:
(a) layer 1 is a thick aquitard and layer 2 is a thin aquifer (confined
flow); (b) layers 1 and 2 are both thin, and flow in layer 3 is negligible
(semiconfined and unconfined flow above an impermeable base). These
cases, for which the layers are always either thick or thin, together
with condition 3—4, allow the introduction of some simplifying ap-
proximations. Although many restrictions have by now been introduced
on the range of applicability of the solutions, they do in fact cover a
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wide range of practically occurring situations, and provide a conceptual
framework for the analysis and understanding of more complicated
cases.

The main concern of the analysis is to find explicit equations relating
the propagation parameters q_ and p to the geohydrological charac-

teristics of the layers. These equations can be found through equations
3--2 and 3-3 together with condition 3—4 without reference to the
boundary conditions other than that the fluctuation at the boundary is
periodic in time. They are only applicable for points sufficiently far
away from the boundary, but since they require no detailed knowledge
of the potential differences at the boundary they are nevertheless
useful for the many cases where only data for the propagation of the
fluctuations are available or can be obtained. Special attention will

be given to the equations for p, because this quantity can be easily and
reliably determined by field measurements. Some attention will also be
given to the quantities A and A, appearing in equation 3 1b, which
are determined by the boundary COIldlthIlS

3.1.3 — The approximations

As indicated above, the analysis will only be carried out subjection to
condition 3—4 for cases where the aquifers are thin (i.e. satisfy condition
3—6) and the aquitards are thin or thick.

The terms “aquifer” and “aquitard” were defined in chapter 2 through
condition 2—54. For the aquitards equation 2—55 holds, which states:

2 . . [} '
9 (aquitards) = 1ij /Kj 3-7
With this equation condition 2—54 defining an aquitard can be written:
' wSJ-'/Kj (aquitards) >> |p? | 3-8
This condition cannot be further specified until solutions for p have been
found, but it is useful in this form because the magnitude of p can
usually be estimated fairly well.
Condition 2—-57, deﬁnmg a “thin” aquitard, can be written (with use of
equation 3-7): '
u2 -2 [ ‘ —_—
1 ;" D; I<_‘_1 , 3-9

When this condition holds the following approximations can be used:
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sinh(quj) qj J( 1+ qJ"’D 2/6) 3-10a

cosh (q;D;) =1+ qu Dj2/2 3—-10b
-1

coth(qJDJ) = (1+ quD 2/3) (qJ ) 3-10c

Now cond1t10n 3—9is aless restrlctlve version of condition 3—4, by
which the solution for points far away from the boundary is selected.
Since solutions based on condition 3—4 can also be sought through the
approximations given in equations 3—10, such solutions would be
identical to those based on condition 3—9. Therefore condition 3—9
will replace condition 3—4 in the following analysis.

Condition 2—59, defining a “thick™ aquitard, can be written:

lgy*Dy*1 >> 1 3-11
When this condition is satisfied, and with the real part of q; defined to
be positive as before, the following approximations can be used
(utilizing the fact expressed by equation 3—7 that for aquitards the
real and imaginary parts of q are equal):

~ ~ q.D.
sinh(q;D;) = cosh (qiDp) = led) 3-12a

coth(qJ ) = 3-12b

The restriction to thin or thick aquitards and solutions satisfying
condition 3—4 can be expressed through application of condition 3—9
to the aquifers, and condition 3—9 or 3—11 to the aquitards. The
approximations given in equations 3—10 and 3—12 will be used to find
the corresponding solutions of equations 3—2 and 3-3.

3.2. — Confined periodic flow
3.2.1 — The solution for confined flow

When layer 2 is an aquifer, the flow in this layer may be defined as
being confined when it is isolated from the water table. This situation
occurs when layer 1 is a thick aquitard as defined by condition 3—11.
In addition it will be required that layer 2 be a thin aquifer and that
layer 3 be a thick aquitard. A solution to equations 3—2 and 33 for
this case is thus to be sought subject to conditions 3—9 for the aquifer
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and condition 3—11 for the aquitards:

19,?D,%I< 1 3-13a
lq,?D, 2 >> 1 3-13b
lq,?D,% | >> 1 - 3-13c

Since layers 1 and 3 are specified to be aquitards satisfying condition
3-8, equation 3—7 gives:

q,? =iwS,'/K,’ 3-14a
9, = iwS,'/K,r 3-14b

The condition that the aquifer, layer 2, be thin, can be expressed through
condition 3—6:

w82 ¢, <1 3—15a
With equations 3—14, conditions 3—13b and 3—13c can be written:
wS1 ¢, <1 3-15b
wS,c, < 1 " 3-15c
The symbols Sj and ¢; are defined as follows:
—a!
Sj = Sj Dj 3-16a

is the elastic storage coeefficient of layer j, and
= ' '

is the vertical hydraulic resistance of layer j.

Conditions 3—13b and 3—13c imply that the approximation given by
equation 3—12b is applicable for layers 1 and 3. With this approximation,
equation 3—3 ‘reduces to:
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q.K,” ¢k’
footh (g, D) + 227 + 2t

2772 1771

q,K,’ , of
+ q——}_K , coth(q,D, )] (K, q1f+So-a—t—)=0 3-17
171

of
Consideration of equation 3— 14a shows that the factor q K, 'f+8 05{

takes nonzero values. Therefore equation 3—17 implies that:
qu2' coth g, D, (q1K1’ +'q3K3') + q22 Kz'2 + q1K1'q3K3’ =0 3-18

Condition 3—13a implies that equation 3—10c applies to coth (q,D,).
Equation 3—18 then yields finally:

? . ? B !
q z_ =9, K, _qus’_ c2q1K1 9;K, 3-19
2

Kz' D, [1 +(qu1, + qua,) c2/3]

and with equation 3—2:
! ! ?
S ' + q1]:(1,.'-(131(3 +c2qlK1 q3K3

, , 3-20
K K,D, [1+(q1K1 +q3K3)cz/3]

Equations 3—14a, 3—14b, 3—19, and 3—20 together give the explicit
solutions for q,, q,, q, and p in terms of the thicknesses and the
hydraulic characteristics of the layers. For this case of confined flow
therefore the problem of the transmission of periodic fluctuations is
essentially solved.
-With use of equation 3—19 the condition on q,D, (condition 3—13a)
can be written:

le,(q, K1' + ana' tc,q,K, 'q3'K3') 1<
. ! ! . A P . "
[1+(q,K, *q;K;) ¢,/ 31 . 3—21 .

This condition is certainly satisfied if (using equations 3—14):

c,VwS,'K ' < 1/3 3-22a
¢, VwS,'K,’ < 1/3 3-22b
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When these conditions are satisfied, than so is condition 3—9 by which
the special solution for points far away from the boundary was selected.
They imply that in the region where this solution is applicable the
vertical potential gradients in the aquifer are small. Conditions 3—22
together with conditions 3—15 limit the applicability of the solution,
even for points far away from the boundary.

The vertical potential distribution in layer 3 has already been given in
equation 2—21 which states:

Z—Z
q, (z-z,) 393

g8,(2) = g,(z,) e
Application of equation 3—18 to the general form of g, (z) given by
equation 227 gives:

— z—Z
%(z-2) 3-24

8 (@=g,,)e
Thus the vertical potential distributions in the aquitards are exponential
in form, decreasing with vertical distance away from the aquifer, layer 2,
since the real parts of q, and q, are positive.

The vertical potential distribution within layer 2, g, (z), can be found
through a combination of equations 2—24 and the approximations
implied by equations 3—10a and 3—10b. g_(2) is 2 quadratic function of
z, but its general form is complicated and is not given here. Suffice it to
mention that for many practical instances of confined flow the vertical
potential gradients within layer 2 are negligibly small, as will be discussed
in the next section,

3.2.3. — Special cases of confined periodic flow.

The equations for confined periodic flow derived in the previous section
treat the general case where the effects of storage and vertical flow in the
aquifer and in the aquitard all may be significant. For most practical cases
at least some of these effects are negligible, and the equations can then be
further reduced.

For many commonly encountered cases conditions 3—22 are easily satis-
fied; in fact the more restrictive conditions:

c,\/ @8,'K' << 1/3 3-25a

c\/ WS K. << 1/3 3-25b

2 3773
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often hold. With these conditions equation 3—19 for q,*> becomes:

q,’D,?* = ¢, (\/iwS, 'K ' + \/iwss'K; ) 3-26
It follows from conditions 3—25 that then:
|q,?D,? << 1 3-27

When conditions 3—25 hold, the vertical potential distribution within

the aquifer, g, (z), becomes a constant, and the vertical potential

gradients within the aquifer are negligible in the region sufficiently far

away from the boundary, where the solution obtained through these
conditions is applicable. In fact, for such cases the vertical potential gra-
dients in the aquifer are likely to be very small even near or at the boundary,
and the solution is then also applicable near the boundary.

With conditions 3—25 holding, equation 3—20 for p? reduces to:

t . [ 1 . r !
S, , Vies, K" +/Jiws K,

p? = iw-% 3-28
2 K2 D2
Separation of the real and imaginary parts of this equation gives:
1 14 2
n?—m? = <D (\/<.oSl K'/2 +\/w53K3' /2) 3-29a
272

wS 1
2nm= —o2— + (Jé)s "K' /2 +¢us "K' 2) 3-29b
"K,D, KD Vi 35

These are the equations describing the horizontal propagation of a simply
periodic fluctuation for the case of confined flow when the effect of
flow and storage in the aquitards is significant. Similar equations have
been previously derived by T. Edelman (1953), and Ernst (1962).

When the flow in the aquitards is negligible, i.e. when:

\/wSl'Kl" [2 +\wS,’K," 2 << w8, 3-30
equations 3--29 reduce to:

n“ =m ' 3--31a

3-31b
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These equations for completely confined periodic flow have been given
by Jacob (1950) and others. The model for which they hold (flow in
aquitards negligible) is frequently used in the analysis of periodic ground-.
water flow, but in fact an investigation of condition 3—30 indicates that
in practice the effect of flow in the aquitards cannot usually be neglected.
For these special cases the equations for the vertical propagation of the
fluctuations into the aquitards (equations 3—14, 3—23, and 3—24)
remain valid without further reduction,

Condition 3—4, by which the solution for points far away from the
boundary is selected, was derived in chapter 2 through consideration of
the general solution for the one-layer case. One consequence of the
reasoning used was that when the aquitards above and below layer 2 are
impermeable then the solution obtained through condition 3—4 (or

3-9) should be identical to the special solution with q, D, = 0 for the
one-layer case. Equations 3—31, applicable when the flow in the _
aquitards is negligible, confirm the validity of the reasoning of chapter 2,
for they give the same resuit for n and m (or p = nt+im) as was obtained
for the one-layer case with g, D, = 0(equation 2—34).

3.3. — Semiconfined and unconfined periodic flow

3.3.1. — Limiting conditions

For the present purpose it is convenient to define the flow as semiconfined
if the position of the water table plays a significant role in determining the
flow pattern, but the movement of the water table is negligible. Similarly
the flow may be defined as unconfined if it is largely or completely
governed by both the position and the movement of the water table. Both
these types of flow can be included in one analysis if layers 1 and 2 are
both assumed to be thin, satisfying condition 3—6:

wS e <1 3-23a
wS,c, <1 3-32b

The solution for points far away from the boundary can then be selected
through condition 3—9:

lq,?2D,? 1 < 1 3-33a

1q,?D,? | < 1 _ 3-33b
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Layer 3 must be an aquitard compared to one or both of the layers above
it, in other words condition 3-8 applied to layer 3 must be satisfied:

wS,'[K, >>|p? | 3-34

Layer 3 is then an aquitard, and the general condition that it be thick
can be written:

w83 C, >> 1 3-35

To avoid excessively complicated equations it will be assumed that the
effects of flow in the bottom aquitard (layer 3) are negligible. Equation
3—3 shows that this assumption is valid if:

| 4,K,| << lq,K, coth q,D,| 3—36a

|9,K,"1<<|q,K,” tankq,D,| 3-36b
From the limitations on the niagnitude of q,D, and q,D, expressed by
conditions 3—33 and the corresponding approximations given by equation

3—10c it follows that conditions 3—36 are always fairly well satisfied

if:
\/ S.'K.’ '<<i| D2 3-37
W5 Ky c 9 Y, | -
2
This condition will be further analyzed when an expression for q,D,
has been obtained.

3.3.2. — General equations for semiconfined and unconfined periodic flow

In the following analysis the assumption of periodic flow will not be

immediately introduced. Equation 3—3 holds for all types of flow in

thin layers, and in fact, together with equation 2—10, it leads to a dif-

ferential equation for semiconfined and unconfined flow in thin layers

not restricted to periodic flow. This result is interesting enough to warrant

inclusion in an analysis otherwise restricted to periodic flow.

When conditions 3—33 hold, the approximation expressed by equation

3—10c applies to coth(q, D, ) and coth(q, D, ). Equation 2—10, derived

at the beginning of the previous chapter, may be written:
of 2% f

2 2 = o Ca ™ . .
o Dyt = Sje=r— KDy ——

3-38
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With equations 3—10c and 3--38, and with neglect of flow in layer 3
and of second order terms, equation 3—3 becomes:

02 ‘
[K,D, +K2D2]-§— +8,[K,D,c [3+

3

af
+K2D2(c1 +cz/3)] = [S,+8,+5,] 'a—t°+

dtox?
2

3
+8,[S,¢c,/3 +Sz(c1 +02/3),]a—t;— 3-39

The assumption of periodic flow has not been used in the derivation of
this equation, and it is therefore a general differential equation for semi-
confined and unconfined flow in thin layers, subject to the restriction
introduced through condition 39 that it is only applicable for points
far away from the boundaries where the effects of the vertical potential
differences at the boundaries are small. For nonperiodic flow the con-
dition defining a layer as “thin” was given in chapter 2 (condition 2—12).
It should also be mentioned that equation 3—39 is only valid when the
total displacements of the water table are small compared to the
saturated thickness of the layer within which it lies.

Equation 3—39 is similar in form to the equation derived by Boulton
(1954, 1963) on the basis of a “delayed yield” model for

unconfined flow. When for instance layer 1 is a very thin aquitard
(K,D, <<K,D,, 8, <<8,) equation 3—39 becomes:

2722

9?2 3 of
KD, [+ 8,(0 /3 5 —1=(5, +8,) =+
2
f
+5,S,(c, +c,/3) -E-)tT 3-40

which is identical with Boulton’s equation if his “delayed yield index”
is interpreted as being identical to S, (c, tc /3). It has recently been
shown by Neuman (1972), Cooley (1972), and Streltsova (1972) that
the “delayed yield” behavior of unconfined flow may be accounted
for through consideration of the effect of vertical flow within the
aquifer. The above analysis confirms this conclusion, for the terms in-
volving ¢, /3 and (¢, + c,/3) represent the effect of vertical flow. The
factor 1/3 in these terms expresses the fact that when the vertical
flow is dispersed within the layer, most of this vertical flow is concen-
trated in the top or bottom of the layer.

The solution of equation 3—39 for simply periodic flow is straightfor-
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ward. The function f{(x,t) has the general form given in equations 3—1.
With the following definitions:

a=S,+S +8, 3-4la
b=8 ¢ /3+8S,(c, tc,/3) 3—41b
d=K D c /3+K,D,(c, tc,/3) 3-4lc
e=K D, +K,D, 3-41d

the solution for p? is:
iwa — w?Syb

pP = 3-42
e+ inod .

This equation for p is complicated in its generality, but nearly always
reduces to simpler forms for particular cases, as will be shown in the next
sections.

The equations for q, and q, are derived through equation 3—2. With
the following definitions:

a = wS.c. 3—43a
joo)

!
4 = w8{c, tc,/3) 3-43b

the equations for q, and g, can be written:

q,°D,* =
_—K/D [ia, (1+ ia,") ¥iay ] +K, D, [ia (1 +3a )]
- —, 3—44a
K, D, (1+ia /3) +K,D, (1+ia)
9,’D,* =
_K, D, [ia,,(1+ia,, /3)]-K,D, [ia, (1 +ia, [3)+ia,] e

. Y 2N
K,D, (1+ia,/3) + K, D, (1+ia;’)

These equations are also complicated, but again reduce to simpler forms
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for many special cases, They have been included here because the vertical
potential gradients are often significant for semiconfined and unconfined
flow. The equations describing the vertical gradients can be found by a
combination of equations 3—41 with the general form of g (z) and gz(z)

as given in equations 2—24 and 2—27, and with use of the approximations
implied by equations 3—10. These, and conditions 3—33 will not be written
out explicitly here because of their complicated form. They will be

analyzed for some special cases in the next sections. Suffice it to mention
that when conditions 3—33 hold g, (z) will in general be a quadratic function
of z, and g, (z) will in general be a cubic function of z.

3.3.3. — The special case when layer 1 is an aquitard

Equations 3—42 and 3—44 give the propagation parameters p,q,, and q,,
in terms of the thicknesses and the hydraulic characteristics of the layers.
These equations can be reduced to simpler forms for various special cases.
One general condition which nearly always holds is that:

So' >> 8, +8, 3-45
This condition expresses the assumption that the storage at the water
table is much larger than the elastic storage. It will be used in the analysis
of this section.

One interesting special case with many possibilities of application is that
where layer 1 is an aquitard and satisfies the condition:

K,D, << K,D, 3-46

Then equations 3—44 forq, D, and q,D, reduce to:

q,’D,? = iwS ¢, 3—47a
' iwS, ¢ (1+iwS, c, /3
q22D22 - _ 0 2( 1 1/ ) 3—47b
1+ inoc'
where ¢ =¢c, +c,/3 "3-48

Equation 3—47a is identical to equation 3—7 for the q; of aquitards.
Conditions 3—33 now reduce (approximately) to:
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wS1 ¢ <1 3—-49a

WS¢, <\/1+w?S, 2c | 3-49b

and condition 3—37 which expresses the condition that the flow in the
base be negligible then becomes:

w8y >>(1+wS ¢, )\[wS3'K5' 3-50

With this condition that layer 1 be a thin aquitard, equation 3—42 for
p? reduces to:

_ w8 [1+iwS ¢ /34 iwS, ']
K,D, [1+w?S 2]

2

3-51

Separation of the real and imaginary parts of equation 3—51 gives:

2q 2.t
n?-m? = @5 ¢ - ' 3-52a
K,D, (1+ w8 %c?)

1 . ]
wSy[1+ wS ¢ (w8, ¢ /3 +wS,c)]
2 ! .
K, D, (1+w?S 2c?)

2nm=

3-52b

Equations similar to these have been derived by Wesseling (1959), who
neglected the vertical hydraulic resistance of layer 2 and the elastic storage
in layer 1, but included the effects of loading due to storage of water at
the water table (a negligible effect as it turns out).

Still further reduction is possible for many particular cases. A series of
these can be listed as follows:

(2) Apparently confined flow

Suppose

WS, ¢ >>1 3—-53a
then through condition 3—45:

wSOc' >>> 1 3-53b
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and equations 3—52 reduce to:

nz_n'l2 =0 3—-54a
S
2nm = 2 3—54b
K2D2

These equations are identical to equations 3—31 for compietely confined
flow, and illustrate thereby the coninuity between confined and semicon-
fined flow when the overlying aquitard is thin and highly impermeable.
Condition 3—53a can only be satisfied when S, is much greater than S , a
rare situation in practice.

(b) Semiconfined flow
Suppose:

(S, ¢,/3+wS,c") (w8, ¢y >> 1 3-55a
and

wSyc' >> 1 3-55b

then equations 3--52 become:

1
I‘lz_ln2 = r 3—563
K,D,c
wS. ¢ [3+wS.¢
20m = _.iui 3-56b

g
K,D,¢

For this case the pdsition, but not the movement, of the water table play a
role in determining the flow. Equations similar to these but not including
the elastic storage in the aquitard, have been presented by Bosch (1951).

(c) Unconfined flow (with vertical p otential gradients in the aquifer)
Suppose:

! . NP
wSyc (WS¢ [3+ws, )<< 1 3-57
Then equations 3—52 can be written:
w?8 %d
n”?-m? = 0 3—-58a

K,D, (1+w?S *c'?)
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wS,
2nm = PR 3-58b
K,D, (1 +w*S “c®)

As can be seen from these equations, the flow in this case is governed by
the position and movement of the water table, and the effects of elastic
storage within the layers is negligible. Equations similar to these have been
derived by Steggewentz (1933) who assumed however that only the
vertical hydraulic resistance of the covering aquitard was important, Ernst
(1962) derived similar equations using Boulton’s (1954) “delayed yield”
model, not a surprising result in view of the similarity of equations 3—39
and 3—40 to Boulton’s equation.

For this case the effects of vertical potential gradients within the aquifer
are usually not negligible, especially when the overlying aquitard is not
present. In the next section a detailed analysis will be given of these
gradients when the flow is unconfined.

(d) Unconfined flow {effect of vertical potential gradients negligible)
When:

wSoc' <<1 3-59

then, with condition 3—45, equations 3—52 give:

n?-m?* =0 3—-60a
wS '

2nm = 0 ' 3—-60b
K,D,

For this case, which applies only for unconfined flow in very thin
aquifers, the effect of vertical potential gradients within the aquifer is
negligible. Equations equivalent to equations 3—60 have been derived
by Werner and Noren (1951) on the basis of Dupuit’s assumption of a
constant hydraulic gradient in any vertical.

3.3.4. — The vertical potential distribution for unconfined flow

As was mentioned in the previous section, the vertical potential gradients
within the aquifer are usually not negligible for unconfined flow. The
reason for this lies in the fact that, in contrast to confined and semicon-
fined flow, for unconfined flow all the storage takes place at the water
table, ie. at the top of the aquifer, rather than throughout it as for
elastic storage. '
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The flow is unconfined when condition 3—57 hold. Then equation 3—-47b
. forq, becomes:

. 20 2 !
2p 2 = 1w8002 +w S0 c,c
q2 - -

3-61
2: 1+ w? 802 ¢’

Substitution in the general form of the vertical potential distribution
gz(z) as given in chapter 2 (equation 2—-24) gives (with q3K3' =0, and
the approximation implied by equation 3—10a):

(@ = g,(z,) [1+9 @2,)/2] 3-62

and with equation 3—61:

0= ('Z ) Swz §,2¢,¢ +iwS c,) (z—z,)* 363
gz gz 2 (1 + w2SO2C’2)' 2D22

In terms of amplitudes and phases this equation implies that going from

the bottom to the top of the aquifer the amplitude decreases, and the

phase lag increases. It should be noted that these equations are not valid

if conditions 3—49, limiting the thickness of the layers, are not

satisfied.

The vertical potential distribution in layer 1, g (z) is approximately a

cubic function of z when condition 3—33a holds (as consideration of

equations 227 and 3—10 shows), If layer 1 is very thin, i.e. condition

3—32a holds more stringently, then g (z) is approximately a linear function of z.

3.3.5 — The special cases of no storage at, or no movement of the water table

As was already mentioned in chapter 2, special cases of flow and storage
at the water table can be included in the results of the general analysis, as
longas S, the ratio of the amount of water stored to the potential change,
at the water table, is constant.
When there is no storage at the water table, as occurs for instance when
the zone of capillary rise reaches to the ground surface, S, can be taken
as zero, Then equation 3—39 reduces to:
9% f
(X,D, +K,D,) = (S

of
5x—2' + S ) 5‘;‘ 3-64

1 2

This type of flow is equivalent to the completely confined case, as de-
scribed by equations 3—31,
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When the water table is held fixed, as by drainage, S, can be taken as
very large or infinite, and integration of equation 3—39 gives:
K O
(K1D1c1/3+K2D2c)—a—); =(Slc_l/3+Szc)¥+f 3—65 »

Here the integration constant has been put equal to zero since only

changes of potential are being considered. For simply periodic flow the .
solution for p is: - :

0 1+iw(S ¢ /3+8, ¢) 366
. !
K,D, 01/3 +K,D,¢c
When layer 1 is an aquitard this equation gives:
1
n’-m? = - 3-67a
K,D,c
wS, ¢ [3+wS. ¢
2nm =1L 2 3—67b
K,D,c

These equations are identical to equations 3—56 for semiconfined flow
when the water table is free to move. Their significance is somewhat
different however, for in this case of a fixed water table equations 3—67
apply even when the frequency of the periodic fluctuation is very small
or zero (steady flow). In fact when:

w8, ¢, /3+ws,d << 1 368

equations 3—67 reduce to:
1
n = - 3-69a
K,D,c

m =20 3-69b

and then the equation for the horizontal potential distribution f(x,t)
becomes: »

_1 _
K.D. ) ? -x(K.D. ¢ iwt
fix,f)=A, ex( 2D, +Ae (K,D,¢) e 3-70

(S 3]

These equations, which apply even for steady flow, are equivalent to the
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“polder” equation derived by Mazure (1932). Mazure’s equation and
elaborations of it have been widely applied. The assumption of steady
flow on which it is based is valid when condition 3—68 holds.

3.4 — Horizontal flow and boundary effects
3.4.1 — Match to boundary conditions

In the previous sections equations 3—2 and 3—3 have been solved for
some special cases of simply periodic flow in a three-layer system
consisting of thin aquifers and thick or thin aquitards. A general
solution of the problem of simply periodic flow in such layers would
also have to satisfy whatever boundary conditions might be imposed
at the ends of the flow system. Such a complete solution has not

been given, except in chapter 2 for the case of a single isolated

layer with no flow through its upper and lower surfaces. It was argued
in chapter 2 however that solutions which are obtained subject to con-
dition 3—4 (or 3-9) should closely approximate the exact solution at
points far away from the boundaries, and the analysis was carried
through on that basis. For many cases with special boundary conditions
these particular solutions do in fact represent the complete solution,
The solution for points far away from the boundary, which has been
obtained in the previous sections, has the general form (equations
3-1):

h]- (x,z,t) = gj(z) (Alepx A, e—px) eiwt 3-71

In the foregoing analysis the vertical potential distributions g (z), and
the horizontal propagation parameter p have been determined in terms
of the thicknesses and the hydraulic characteristics of the layers. Except
for some cases of unconfined flow, the function g(z) nearly always
reduces to a constant within thin aquifers. For soie special cases the
quantities A and A, can be determined through the boundary conditions
as shown below.

The potential fluctuations in the aquifer are usually induced by some
external source such as a sea subject to tidal fluctuations, or a river with
changing stage. In nearly all such cases there is an unknown entry
resistance between the aquifer and the external source. Loading effects
and complicated vertical flows also may play a role in the transmission
of the fluctuations from the open water to the aquifer. In most cases
therefore the potential fluctuation of the open water cannot be used
directly as a boundary condition for the fluctuations in the aquifer.
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Instead some point within the aquifer can be used, most conveniently
taken at the observation point nearest the source of the fluctuation, If
this point is far enough away from the shoreline to satisfy condition
3-S5, then the actual vertical potential distribution will probably closely
match that specified by the particular solution as in equation 3—71
above. With x being the distance from the (straight) shoreline, if the
system is unbounded in the positive x-direction, the boundary conditions
can be written:

iwt
h(x= Xy:2,t) = g‘(z)A0 e 3-72a
J ]

hj(x~—— =,z,t) remains finite, 3-72b

where x is the position of the observation point nearest the shoreline.
With these boundary conditions the solution for points inland from
X, is:

0

—n(x—x,) fwt-m(x—x,;)]
e ‘

h(x.z2,t) = g(2)A e 3-73

Thus, when the boundary is taken sufficiently far inland the potential
fluctuations can to a good approximation be described by the particular
solutions which have been derived in the previous sections. When the
aquifer is very thin, vertical potential differences in the aquifer are
usually very small, and gj(z) then reduces to a constant for the aquifer,

For such cases the particular solution is applicable even near the source
of the fluctuations,

Solutions similar to that of equation 3—73 but more complicated in form
can be derived for cases of multiple boundaries, such as for flow in a long
narrow island or land tongue.

3.4.2 — The case of entry resistance

In general the relationship between the external open water fluctuations
and the potential fluctuations within the aquifer is complicated. However,
a fairly straightforward analysis is possible for the case of flow through an
entry resistance, a roughly vertical thin resisting layer, as illustrated in
figure 3-2.

In figure 32 layer 2 is a thin aquifer, and layers 1 and 3 are aquitards.
Layer 1 may be thick or thin or absent altogether. The entry resistance
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may be considered as vertical if the length of its projection on the x axis
is much less than the horizontal distance through which the fluctuations
penetrate the aquifer (which may be taken as equal to 1/n). Similarly,
loading effects will be negligible if the horizontal distance from the
aquifer outcrop to the shoreline is much less than 1/n, and if the entry
resistance is small enough to allow passage of a considerable fraction of
the fluctuation into the aquifer,

OPEN WATER ———>
AQUITARDS
ENTRY AQUIFER

RESISTANCE

Figure 3—2 Aquifer separated from open water by an entry resistance

Let the potential fluctuation of the open water be represented by:

_ iwt .
hs = As e 3-74

and the potential within the aquifer, assuming that vertical potential
differences are negligible, be represented by:

_ _ . Tp(x—x,) iwt+ 1
hy(x=x,,)=A e e 3-75
where as Agand A are real, and 1 represents the phase change due to
flow through the entry resistance. The horizontal flow through the entry
resistance must be equal to the horizontal flow in the aquifer at x = X
If the hydraulic resistance of the entry resistance is denoted by C,, this
equality gives:

bt (mx) oy

. _ 3-76
Ce X Xx= X,
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yielding:
1 icot
h(x=x,)= ——— Ae 3-71
2 0 1+K,Cop °

Separated into its real and imaginary parts equation 377 gives:

A2 1
(_._0_) = - — 3-78
Aq (1+K,Con)* + X, Com)

-—KZCem

Rate™ 3-78b
1+ chen

tan(l)) =

Thus the flow through the entry resistance results in a reduced amplitude
and a phase lag of the potential fluctuation in the aquifer with respect to
that in the open water. -

The more general problem of the initiation of the fluctuations in the aqui-
fer when loading effects are significant falls outside the scope of the present
analysis. An indication of how this problem may be approached has been
given by van der Kamp (1972) through an analysis of tidal fluctuations in
a confined aquifer extending under the sea. o

z Q 1 b
| :
Lo [~ == IC D DE D D>E >
TR > > >
7, k- SEIRELEILSLS AQUITARDS
22-—~\ 32\ //// AQUIFER
>

Figure 3—3 Internal vertical boundary

3.4.3. — Reflection and transmission at an internal vertical boundary

A change of hydraulic characteristics within an aquifer may lead to im-
portant reflection effects. The analysis of such effects given here will be
restricted to the case of an abrupt change in the horizontal propagation

parameter p across a line parallel to the shoreline as illustrated by figure
3-3.
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It is assumed that the boundary between the regions a and b is a vertical
plane at x = x, perpendlculaI to the x axis. The horizontal propagation
parameters p aIe denoted by p? and p°, where the superscripts “a” and
“b” denote the regions as in figure 33, In general there must be
continuity of potential and horizontal flow across the boundary. Now
the function g,(z) which appears in equation 3—71 being part of the
special solution for h;, is determined by the geohydrological properties
of the formations and will therefore in general not be the same on both
sides of the boundary. It follows that the continuity conditions cannot
in general be satisfied by the special solution for h; in the form of
equation 3—71. However, if the vertical potential differences in the
aquifer are very small then g2(z) reduces to a constant, and the continuity
conditions can be written:

fi(x = Xyt = fb(x = Xqt) 3—79a

0 0 ‘
2 fAxp) ey K® —(x,1) | 3-79b
ax X =X, ox X =X,

With the form of the horizontal potential dlstnbutlons as given by equation
3—1b, these equations can be written:

A —px by —pPx
AL T a B P T i g b P Ty b TP g g
a

b
- X
— A% P Yoy xbpba beP To_p b

b
—p°x,
K2p? (A, R . P %) 3—-80b

It may be assumed for the sake of simplicity that the fluctuations originate
in region “a” and that in region *b” far away from the boundary at x,
they become negligibly small. Then A b 0, and solution of equations
380 gives for the horizontal potential distributions:

a. .
—px iwt
fA(x,t) = Ail. e P e +

+A ae_pa"o {(l“Kb p0/Kp?) by }x—x,) iwt

2 3-8la

1+ KBpB/Ka a)J
—P (X X ) jl iwt
3-81b
)

—px, [ 2e ~ T %
fb(x,t) = A2a {(1 + Kb b/Ka a
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The equation for f3(x,t) consits of two terms, being the incident and the
reflected waves respectively. The expression for fb(x,t) represents the
transmitted wave. When the hydraulic conductivity of the aquifer in region
“b” is very small so that K’p® is much smaller than K®p?, there is
practically total reflection, and the reflected and incident waves have the
same amplitude and phase at the boundary x = x .

The situation to which equations 3—81 apply, namely that of an abrupt
transition in conductivity across a line parallel to the shoreline, might

seem much too restricted to be of much practical importance. However,
observations of tidal fluctuations in fractured sandstone aquifers indicate
that such a transition to a less conductive region does often occur. It may
be that the repeated back and forth movements of the groundwater in such
coastal aquifers have a flushing effect on the fractures, in places resulting in a
large increase of conductivity near the shoreline.

3.5 — Concluding remarks

The analysis of this and the preceding chapter has been based on what
one might call a “classical” approach to the theory of time-dependent
groundwater flow, based on Darcy’s law and a linear proportionality
between changes of water storage and changes of hydraulic potential, as
well as other assumptions such as that of homogeneity of the porous
materials. The main purpose of the analysis was to work out the conse-
quences of this approach as completely as possible for some simple
cases of periodic flow. As far as possible all factors that might influence
the flow were considered, with emphasis on the horizontal and vertical
flows and the elastic storage in both the aquifers and the aquitards. In
this manner the situations for which the various equations apply have
been circumscribed in detail. Consequently a comparison of the ob-
servational results for such situations with the theoretical predictions
can give a good test of how far the “classical’” theoretical approach that
has been used can account for the flows. To the extent that the theory
can be shown to be adaquate, it can then be used with confidence to
predict the flows, or to obtain information concerning the hydraulic
characteristics of the formations. )
Through the analysis presented in this chapter nearly all the equations
for special cases of periodic flow, previously derived by other authors,
have been integrated in one general approach. In this way the relation-
ship between these and other special cases has been made more clear,
and it has been possible to define the ranges of validity of the various
special equations in terms of quantitative criteria. Strictly speaking a
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particular equation can only be applied to a given situation if all the
conditions assumed in its derivation are satisfied. :

The equations for the potential distributions and the propagation para-
meters, derived in this chapter, are written in terms of the angular
frequency w, the thicknesses of the layers D;, and the hydraulic
characteristics K;, K;', and S;’. These variables occur in the equations

in various combinations such as the vertical hydraulic resistance

c; (“1 D, K] "), the diffusivity S; /K] or the quantities S]c and K]D c;. The
quant1t1es S. c might be referred to as the “time constants™ of the layers

. When the “{1me constant’ of the overlying aquitard, S,¢c,, is much larger
than the characteristic time of the flow (1/cw for per10d1c ﬂow) then the
flow is confined; when it is smaller the flow is semiconfined or unconfined.
In fact the terms *““confined” and “unconfined” as applied to time-depend-
ent groundwater flow could be defined in this manner,

In the following chapters empirical results will be presented which serve

as an observational check of the theory for periodic flow developed in

this and the previous chapter. It will turn out that in many, but not all,
cases the theory can give a satisfactory account of the observed potential
fluctuations,



4 — DATA ANALYSIS METHODS FOR PERIODIC FLUCTUA-
TIONS

4 .1 — The computation of sinusoidal components
4.1.1. — The nature of the data

The theory developed in the previous chapters refers to periodic variations
of hydraulic potential in an aquifer-aquitard system. Such variations can
be measured directly, and the resulting data compared to theoretical
predictions. In this chapter some problems and methods of analyzing the
experimental data will be discussed. Methods of obtaining data on hydrau-
lic potentials such as those utlhzmg manual taping or water level recorders
will not be discussed here.

Once the raw data involving the variations of hydraulic potential with
position and time has been obtained, the next problem is to relate these
data to the theoretical predictions. This means that an appropriate
theoretical model must be selected as discussed in the previous chapters.
It also means that the observed potential variations must be split up into
the various components due to different kinds of flow, so that each can
be considered separately. Such components might for instance be those
due to radial flow to a pumped well, or, most important for the present
case, the various sinusoidal components due to tidal effects. It is this
problem of the splitting up into various components with which this
chapter is largely concerned.

4.1.2 — The general approach for analyzing periodic flows

The theory for periodic flow developed in the previous chapters is in
fact limited to the consideration of flow due to a single sinusoidal
fluctuation. This is a legitimate simplification since by the wellknown
theorems of Fourier a periodic motion can always be represented as

the sum of a series of sinusoidal components of various frequencies.

As has been discussed in chapter 2 the equations governing the flow

are linear. Each component may therefore be considered as acting
independently of the others and may be separately considered. (In
principle this linearity is itself a consequence of theoretical assump-
tions, and should be empirically verified.)

The periodic motions encountered in practice are usually complicated
but can be considered as consisting of a small number of significant
components, If the theory is to be applied, the frequency, the amplitude
and the phase of each component must be determined. Various methods,
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generally referred to as Fourier analysis, exist for the determination of

the components (Dronkers, 1964; Jenkins and Watts, 1969; Godin,

1972 and many others). The choice of a particular method depends on various
factors such as whether the frequencies of the components are known in ad-
vance, the length and quality of the record, or the practical consideration of
the computational facilities that are available. An example of such a
Fourier analysis is that carried out by Timmers (1955) for the changes

of hydraulic potential due to seasonal changes in the stage of the river
Yssel, near Olst, the Netherlands (see chapter 5, section 5.2.3). Since these
methods of analysis are wellknown they will not be further discussed

here, except for the special case of the analysis of tidal fluctuations in
coastal aquifers, which will be discussed in more detail in the next section.
A motion is periodic in time if it is repeated exactly at set intervals of

time, each equal to the period of the motion. Such pure periodic motions
are rarely encountered in practice. Now some form of Fourier analysis can
be applied to any variation of potential with time. Whether the theory of
periodic fluctuations may be successfully applied to the sinusoidal com-
ponents thus obtained depends on the extent to which the motion may in
fact be considered as periodic in time, and on the extent to which the
particular equations that are to be applied are sensitive to non-periodicity.
An analysis of the problems involved in deviation from purely periodic
motion is not given here. Most of the data that will be presented in the

next chapters refer to tidal fluctuations which are indeed periodic to a

large extent. For such cases the effects of nonperiodicity are small, and

can be further eliminated from the data for phase lag and amplitude by
averaging over a time duration of several periods.

4.1.3 — Computation of tidal components for a one-day water level record

A common case of periodic groundwater flow is that of the flow in coastal
aquifers induced by tidal motions of the sea or of tidal rivers. In fact the
empirical results represented in the following chapter are for the most
part obtained for this kind of flow. For this reason some methods of anal-
ysis for this type of flow will be described in detail in this section.
Methods of analyzing and predicting tidal fluctuations in open water are
well established (Dronkers, 1964, Godin, 1972). In most cases the periods
of the various tidal components are exactly known from astronomical
considerations. The tidal fluctuations in groundwater potential will exhibit
the same components as occur in the nearby open water, but may also in-
clude higher harmonics due to foreshore effects. In principle the methods
used to analyze the open water fluctuations can also be applied to the
groundwater fluctuations as was done by Carr (1971), who applied har-
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monic analysis to sixteen-day continous water level records from a row of
wells at Borden, P.E.1., Canada, situated within the zone of tidal influence.
However various practical considerations usually make it difficult to obtain
and analyze the long continuous water level records required for such a
harmonic analysis.

For alenth of time of about one day tidal fluctuations may to a good ap-
proximation be considered as consisting of two major components, namely
the diurnal component with a period of 1490 minutes, and the semidiurnal

water level

(meters)

0.

0.

0.

0.
-0.
-0.
-0.

w
T

N =202 NWRN=02wn
T

15 20 (o] 5 10
t (hours)

©c0000000
oL MW N®

)

Figure 4—1. Observed water level in well B at Borden, P. E. 1., Canada, July 4-5,
1969; and function fitted by one-day least squares fit (t in hours)
Observed water level: 0(t)

Semidiurnal component: F_(t) = 0.258 cos (0.506t + 0.230) meters
Diurnal component: F, (t) =0.151 cos (0.253t+ 1.354) meters
Fitted function: F(t) =0.415 meters + F (1) + F.(t)
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component with a period of 745 minutes. (In some instances the next
higher harmonic with a period of 745/2 = 372.5 minutes may be large
enough to be significant.) The diurnal component actually consists of main-
ly three components with periods of 1436, 1444 and 1549 minutes. Its
phase and amplitude will therefore slowly vary from day to day, as the
relative phases of these three components vary. Similarly the semidiurnal
component comprises mainly three components with periods of 720, 745,
and 760 minutes. The approximation of only two components with pe-
riods of 745 and 1490 minutes is therefore only valid for lengths of time
of not much more than one day. Figure 4—1 illustrates how a tidal motion
can be represented as the sum of these two components. The amplitude
and phase of these two components can be calculated from a one-day
water level record, as described next. Analysis of a longer data record, such
as Carr’s sixteen-day analysis, allows a resolution of the various components
which together form the diurnal and semidiurnal components.

The amplitude and phase of the semidiurnal component only can be deter-

' mined from the heights and times of the maxima and minima in the water
level record. This method, described by Carr and van der Kamp (1969),
gives no information on the diurnal component, and can in fact only be
used to good effect when the semidiurnal component is larger than the
diurnal component. The advantage of this “peak to peak’” method of analy-
sis is that it can be carried out quickly, and does not require the use of
computer facilities.

For many applications it is desirable to know the amplitude and phase of
both components, These can be determined by fairly simple arithmetical
methods utilizing the fact that the period of the semidiurnal component

is exactly half that of the diurnal component. When computer facilities

are available a least squares fit method of analysis affords a simple and
reliable means of obtaining the desired information by finding a function
of the form:

f(t)=M+Alsin(w1t+dl)+A2sin(w2t+d2) 41

which best fits the observed water level record (w, and ¢, are the angular
frequencies of the semidiurnal and diurnal components respectively). A
detailed description of the least squares fit method of analysis is given in
numerous texts on applied mathematics or numerical analysis, and is there-
fore not given here. This method has the advantage that it requires very
little time once a computer program is operating, and it is flexible in that

it can be easily expanded to consider more components, and can be applied
to other types of periodic fluctuations if the frequencies are known.

The data which will be presented in the following chapter have been ana-
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lyzed mostly by this least squares fit method. Table 4—1 gives data which
allow a comparison of the two methods of tidal analysis described above
with the sixteen-day harmonic analysis as reported by Carr (1971). For
this purpose the records for one typical day of the sixteen were chosen for
analysis by the one day least squares method. (These data were made avail-
able to the author by Dr. P. A. Carr, whose cooperation is gratefuily ac-
knowledged). In the first part of the table the data for the wells A, B, C,
and D at Borden, P. E. I., Canada, as determined by Carr from a sixteen-
day harmonic analysis are given. The phases and amplitudes of the two
components are given relative to those of the tidal fluctuation in the sea,
i.e. as phase lag and tidal efficiency (ratio of the amplitude in the well to
that in the sea). The phase lags and tidal efficiencies of the diurnal compo-
nent given here are actually the average of the values given by Carr for the
components with 1436 and 1549 minute periods. In the next part of
table 4—1 the results of the least squares fit method for one day, and of
the “peak to peak™ method for four days as reported by Carr, are
presented in the same manner.

It can be seen from table 4—1 that the results of both the “peak to peak™
and the one-day least squares fit method agree quite well with those ob-
tained by the sixteen-day harmonic analysis.

Figure 4—1 shows the actual water level fluctuations in well B at Borden
during the 24 hour period for which the least squares method was applied,
together with plots of the two components and the fitted curve in the form
of equation 4—1 as determined by the least squares method. This result is
typical of the quality of the fit that is usually obtained, It should be men-
tioned that there are times when a good fit is not possible. This occur
when the amplitudes or phases of the two components are changing rapid-
ly, or when the sea level is subject to irregular changes due to storm surges
and the like.

In figure 4—2 the results of the least squares fit method for a number of
different days are presented graphically. The tidal efficiency and phase

lag of the semidijurnal component in two wells are plotted as functions of
the amplitudes of the semidiurnal and of the diurnal component in the sea.
Well 2-80-0 is about 120 meters from the sea in an unconfined sandstone
aquifer. Well 3-207 is located nearby, at about 150 meters from the sea,
and open to a fully confined aquifer. Both wells are located in a research
site near Cap Pélé, N. B., Canada (see chapter 5, section 5.2, and figure
5—6). These results indicate first of all that at this site the tidal efficiency
as obtained by the one-day least squares method is reproducible to

within about 10% of the mean, and the phase lag to within about 20% of
the mean. Thus the tidal effect can be predicted within this method to
within these limits. These results also indicate that the tidal efficiency



59

and phase lag are to a good approximation independent of the amplitude
of either component, as might be expected from the linearity of the equa-
tions governing the flow.

The one-day least squares fit method cannot reproduce the observed tidal
fluctuations exactly since the tidal motions are in fact not strictly periodic
with a period of 1490 minutes, and the sea level is often subject to irregular
fluctuations due to wind effects and the like.
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Figure 4-2. Tidal efficiency (ES), and phase lag (LS) for the semidiurnal tidal
component, in wells 2-80-0 (+) and 3-207 (.) at Cap Pele, N.B.
Canada; plotted versus the amplitudes in the nearby sea of the semi-

diurnal component (ASe,), and of the diurnal component (ADg,)

4.2, — Elimination of tidal effects from water level records

The tidal effects in coastal aquifers sometimes make it difficult to observe
and analyze other types of potential changes such as those due to pump
testing or seasonal changes. Now it has been shown in the previous section
that the tidal effects in wells can be predicted because the tidal efficiencies
and phase lags are approximately constant on a day-by-day basis. It is
therefore possible to eliminate tidal effects from the water level record of
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a well, usually to the extent that the remaining irregularities are smaller
than 10 per cent of the original tidal fluctuations in the water levels of the
well. To carry out this calculation the tidal fluctuations of the sea nearby
must be measured for about one day and analyzed for the amplitudes and
phases of the two components, With the known tidal efficiency and phase
lag of each component the tidal potential changes in the well can be calcu-
lated, and substraction from the observed potential changes leaves the ef-
fects due to other flows.
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Figure 4-—3. Tidal and pumping effects in wells 7-88 and 7-152 at York Pt.,
P. E. I, Canada. O(t) = observed water level; R(t) = residual water
level changes after elimination of tidal effects; Q = pumping rate in a
well 196 meters distant, open to the same formation as well 7-152.
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A one-day two-component analysis such as illustrated in figure 4—1 can
usually approximate the tidal changes closely enough to yield a satisfac-
tory elimination of tidal effects, Figure 4—3 gives an illustration of this
method of elimination of tidal effects applied for the drawdowns in wells
7-88 and 7152 at York Point, P, E. I., Canada, These two wells are po-
sitioned one directly above the other, but are open to different aquifers
separated by a semipervious layer. Another well 196 meters away and
placed in the same formation as well 7—152 was pumped at an approx-
imately constant rate as shown in figure 4—3. The observed water levels
in both wells are shown, and also the water level records after elimination
of tidal effects. From the corrected water level records it can be seen that
there is a clear drawdown in well 7-152, and very little or no drawdown in
well 7—88, a conclusion which could certainly not be obtained directly
from the observed water level records without correction for tidal effects.
These results are fairly typical of the quality of the data that may, with
care, be achieved.

The potential changes due to pump-testing in coastal aqu1fers can often
not be satisfactorily analyzed without such a correction for tidal effects.
Some of the empirical results presented in the next chapter are based

on pump testing of the wells used to study tidal effects. For analysis of
these pump tests a correction for tidal effects was indispensible.

4.3 — Well Response
4.3.1 — The problem of well response

The changes of hydraulic potential indicated by an observation dev1ce such
as a well or piezometer are not necessarily identical with the potential -
changes within the formation in which it is situated. To.the extent that .
potential changes in a well involve flow of water from the formation to the
well or vica versa, there must necessarily be a potential difference between
the water in the well and that in the formation at some distance from the
well. Thus when the observation device is used to measure changes of
potential in the formation the effect of its response may not be negligible
and must be considered. In general the importance of this response effect
increases with the volume of water per unit potential change that is stored
in the device, and with the resistance to flow of the formation and of the
lining of the device. It is of course for this reason that pressure transducers,
which minimize the flow, are often used to measure potential changes in
poorly conducting materials. The following discussion will be restricted. to
the problem of the response of wells and piezometers.
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4.3.2 — The theory for well response of Cooper et al.

The response of a well can be determined through observation of the water
level changes in the well after an instantaneous withdrawal or addition of a
quantity of water. Such a test is often referred to as a “slug test” after
Ferris and Knowles (1954). Cooper et al. (1967) have given a detailed anal-
ysis of such a test for the case of a well completely penetrating an aquifer.
They assume confined horizontal flow in the aquifer, and negligible resist-
ance of the filter lining. Through their analysis they arrive at type curves
for the water level in a well after the initial water level change, which allow
a determination of the hydraulic conductivity of the formation if the ap-
propiate conditions are satisfied. This method can be useful in that it can
give an approximation of the hydraulic conductivity near the various wells
in an aquifer,

Cooper et al. did not treat the problem of calculating the potential

changes in the formation from the observed water level changes in the well.
However, a simple approach to this problem, as described below, may prove
satisfactory for many cases.

4.3.3 — The theory for well response of Hvorsley

For many observation wells the theory for well response derived by Cooper
et al. as described above is not applicable because the effects of vertical
flow in the formation or of the resistance of the filter lining are not negli-
gible. For these cases a simple model developed by Hvorslev (1951) might
be used. Hvorslev’s approach assumes that the rate of flow of water into a
well after a sudden withdrawal of water is directly proportional to the dif-
ference between the undisturbed potential in the formation (denoted hy)
and the potential of the water in the well (h,, ). This proportionality can be
written:

oh, .

W xhe— 2

ac P by 4

or, as an equation:

ohy, _
Tw—a’t"'hf_hw 4-3

where the constant Ty is the “time lag constant” of the well, called by
Hvorslev the “basic time lag”. When hg is constant, and at time t=t  the
water level in the well is changed by h,, equation 4—3 gives for the subse-
quent change of water level in the well:

hw(t>t9) = hg +hyexp [(t—t,)/Ty, ] 4-4
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This exponential change of water level with time can be used to determine
the time lag constant of a well. For many wells and piezometers equation
4—4 seems to give a satisfactory description of the response of the well to

a sudden change of water level. Figure 4—4 gives an illustration of two such
slug tests for well 1—18 at Cap Pele, N. B., Canada. This well has a filter,
open to the formation, of about one meter long and 10 cm in diameter, and
is positioned in a sandstone formation, After drilling and cleaning a slug
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Figure 4—4. Slug tests for well 1-18 at Cap Pele, N. B., Canada. The time lag
constant of the well was increased by partially filling the well with
sand. Observed water levels are represented by + ; the dashed lines
were used to calculate the time lag constants (T, ) according to
equation 4—4.

test was carried out on it which yielded a time lag constant of 18 minutes
as illustrated in the figure. Some time later the well was partially filled with
sand, and another slug test was carried out on it which yielded a time lag
constant of 82 minutes. As can be seen from figure 4—4 both tests yielded
water level changes corresponding to the exponential behavior described by
equation 4—4, at least for that early portion of the text for which reliable
measurements of the water level differences could be made.

If the response of a well to a slug test is exponential as described by equa-
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tion 4—4, the actual potential changes in the formation can be calculated
from the observed changes in the well through equation 4—3. In particular,
when the water level change in the well is a simple sinusoidal motion ex-
pressed as:

- hy, = Ay, cos(wt+dy) : . 4-5

it follows from equation 4—3 that the potential change in the formation at
some distance from the well is given by:

he = Agcos(wt+dg) 46
where

AdAy, = 1+ w? TW2 4-Ta

d¢ =d, +arctan (wTy,) 4-T7b

Equations 4—7 have been given by Hvorslev (1951)., In view of the over-

time lag measured corrected with equations
4-7
constant semidiurnal diurnal semidiurnal diumnal
T
w
tidal eff. | phase | tidal eff.| phase |i tidaleff.| phase | tidaleff.| phase
) lag lag lag lag
(muns) (rads) (rads) (1ads) (rads)
18 .323 .750 .409 .509 .326 .599 410 .433
82 290 | .898 | .392 | .623 || .353 | .203 | .415 | .290
— —

Table 4—2. Tidal efficiencies and phase lags in well 1-18, Cap Pele, N. B., Canada,
measured for two different time lag constants of the well, and as cor-

rected for well response by equations 4—7.




65

simplification of the model as expressed by equation 4--3, it is not always
quite certain whether they may be applied with confidence. Table 42
gives the measured tidal efficiencies and phase lags for the semidiurnal and
the diurnal tidal components in well 1—18 at Cap Pele, N. B., for the case
when its time lag constant was 18 minutes, and for the case when it was
82 minutes, Together with these are given the tidal efficiencies and phase
lags of the potential changes in the formation as calculated through equa-
tions 4—7. These should be the same for both time lag constants if equas -
tions 47 do indeed describe the effect of well response accurately. It
would seem from these results that equations 47 cannot be relied upon
to give a very accurate correction for the response of the well, at least not
as regards the phase lags, even when slug tests show exponential behavior
as illustrated in figure 44,

For the tidal analysis presented in the next chapter equations 4—7 have
been used for lack of better, but only where the effect of the i maccuracy
of the corrections would be small,

4.4 — Calculation of the propagation parameters

It was found in chapter 2 that if the aquifer is thin and for points suffi-
ciently far away from the shoreline the potential distribution for simply
periodic flow may be described by an equation of the form:

X —px_  iwt
h(x,z,t) = g(z) (A, ep tA e P Ye 4-8

where g(2), A, A2, and p are in general complex. The horizontal propa-
gation parameter p can be written:

p=n+irn 4-9

where n and m are real and n is defined to be positive. The problem now

is to determine p (or n and m) through measurements of the periodic
motions in a number of wells. Except for the case of unconfined flow

the vertical potential distribution g (z) usually reduces to unity for aqui-
fers. For such cases when the vertical potential differences are very small
the positioning of the filters within the aquifer is not critical in the vertical
For unconfined flow the effect of the vertical variation of potential can be
eliminated if all the observation points are placed at the same height within
the aquifer, preferably at the (horizontal) bottom of the aquifer because
the vertical potential gradients are smallest there (as follows from equation
3-63). Thus it should be possible to design a row of wells which measures
only the horizontal variation of potential (and indirectly the propagation
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parameter p). Of course it is also possible to install a vertical array of piezo-
meters in order to measure the vertical potential variation.

Equation 4—8 applies for the case when the periodic flow emanates from
one or more straight line sources (such as a straight sea shore) so that flow
in the y direction (perpendicular to the x and z directions) is negligible. If
there is only one such source, so that the fluctuation becomes vanishingly
small for large x, and if the thicknesses and the hydraulic characteristics

of the formations are constant throughout the region where the periodic
fluctuations are significant, then the horizontal potential distribution
reduces to the form:

—px iwt
f(x,) = Aje " e 4-10

The real part of this equation can be written:

.——n o
Ref(x,t) = a e (%)

coslwt—m (x~x, ) +d ], 411
wherea and d  are the amplitude and phase constant at the point x ,
usually taken for convenience at the observation point nearest the source
of the fluctuation, Thus for this case the amplitude should decrease expo-
entially with x and the phase lag m (x~x,) should increase linearly with x.
It is therefore possible to check experimentally whether equation 410
applies by means of a row of at least three wells. When this equation may
be assumed to hold, either from such an experimental check or from know-
ledge of the hydrogeology of the region, then the quantities n and m can be
calculated through equation 4—11 from measurements of the fluctuations
in two or more wells. In fact if a; and a)_ are the amplitudes and dJ and dy

the phases lags measured at the ponts X and xy, then:

- ln(ﬁ;;ak) ’ 4-12
XX

m= 3% 4-13
Xk—Xj

In many cases the observed amplitudes and phase lags deviate significantly
from the simple form given by equation 4—11. Such discrepancies may be
due to gradual changes of the thicknesses or the hydraulic characteristics
of the formations in the region where the measurements are carried out, or
they may be due to curvature or small extent of the source. When the
discrepancies from equation 411 are due to such causes the equations
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developed in chapters 2 and 3 cannot be applied, except perhaps approxi-
mately, and further analysis would require a different approach.

However, discrepancies from the form expressed by equation 4-11 may
also be due to such causes as a multiple shoreline (as of a long narrow island
or land tongue) or to reflection effects from a boundary further inland. In
such cases the general form of equation 48 is applicable:

px ~px_ iwt
f(x,t)=(A e tAe e 4-14

The problem then is to solve for the complex quantities A, , A, and p. This
problem can in principle be solved if measurements from three wells at
significant distances apart are available. If the wells are at positions

X (=1, 2, or 3), the measurements will yield:

i(wttq,
f(xj,t) =bje( dJ) 4—15a
iwt
=Bje_ _ 4-15b

; are the amplitude and phase constant measured at the point
T]he complex quantity B; can thus be determined through measurement,
and equations 4—15 together with equation 414 yield:

A, Sden e Pz 4-16

With the subscript “j”” taking the values 1, 2, or 3, equation 4—16 represents
a system of three quations in the three unknowns A ;»A,, and p. The equa-
tions are nonlinear and can therefore best be solved through successive
approx1mat10n methods. When x, —x, and x,—x, are not much larger than

lpl™ the following appr0x1mate equation for p* gives a good first approxi-
matlon

2 _ (X1 _xz)(Bz_Ba) _ (xa—xz)(Bz_Bl)
(%, =%, )(x =%, )%, —%,) [ 2

4-17

A successive approximation method using this equation has been used for a
case described in the next chapter (section 5.4).






5. — DESCRIPTION AND SUMMARY OF THE EMPIRICAL DATA

5. 1 Introduction
5.1.1. The subject of this chapter

In chapters 2 and 3 a theory has been developed for the propagation of
periodic fluctuations through a three-layer system of aquitards and thin
aquifers. The question is now to what extent the theory can account for
the flows encountered in practice, and how it can best be applied in the
pratical problem situations encountered by the geohydrologist. In an at-
tempt to give at least a partial answer to this question empirical results from
a number of different types of periodic flow will be presentend and ana-
lyzed in the light of the theory, in this and the following chapter.

In this chapter the empirical data from a number of different sites will be
described and summarized. The analysis of these data in its relation to the
theory is left for the following chapter. In a sense therefore the material
presented in this chapter is included for the sake of completeness. It is
not essential to an understanding of the following chapter, but it provides
the background information for the crucial comparison of theory and
experiment which is treated there.

5.1.2. The hydrostratigraphic model

The hydrostratigraphic model for which the theory has been developed has
been given in chapters 2 and 3, but it is outlined again here, since the data
will be described in terms of this model. Figure 5--1 illustrates the model.

D DTl L2« WATER
5 2

e THICK
REEFESESE < AQUITARD

Figure 5—1 The hydrostratigraphic model
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The layers 1, 2, and 3 have thicknesses D], horizontal hydraulic conductivi-
ties Kj vertlcal hydraulic conductivities K] , and specific storage coefficients
SJ The storage coefficient at the water table (z=z,) is S . For all the
empirical cases treated in this chapter layer 1 is either an aqultard or absent
altogether. It should be noted that when layer 1 is thick aquitard, isolating
the flow in the aquifer (layer 2) from the flow above, and vice versa, then
the theory remains applicable for the flow in layer 2 even when layer 1 is
not bounded above by the water table, as illustrated in figure 5—1, but by
other saturated formations. The numbering system for the formations used
in figure 5—1 will be used in the description of all the empirical cases, i.e.
in each case the main aquifer will be referred to as layer 2, and the aquitard
above it as layer 1.

The following quantities are also frequently used:

= -, o —
Sj—SJ D_] 5-1

which is the storage coefficient of layer j, and

Cj = D]/K], 5-2

which is the vertical hydraulic resistance of layer j.

5.1.3. The type of data required

In essence two types of data will be sought for each site that is studied. One
of these is data on the horizontal and vertical propagation of periodic fluctua-
tions. The other is information on the gechy drological properties of the
formation obtained by tests other than those using periodic flow.

Data on the propagation of the periodic fluctuations consist of values of the
amplitudes and phase constants at various points in the formations. For most
cases the horizontal propagation is described by means of the propagation
parameters n and m, which are calculated on the assumption that the horizon-
tal potential distribution can be described by a function of the form
(equation 2-17):

px —px_ iwt

flx,t) = (A1 e tAye )e 5-3

where:

p=n+im 5-4
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The quantities n and m are calculated by the methods described in chapter 4
(section 4—4).

Information on the geohydrological properties of the formations (Dj. K,

K] , SJ ,and S ) is obtained or estimated from various sources such as drilling
logs, core tests grain-size analysis, pump tests, etc. Except for the case of
unconfined flow vertical potential gradients within the aquifers are nearly
always small, with the results that little information is available on K !,
Similarly the horizontal flow in the aquitards is usually negligible, and vir-
tually no information is available on K,.

5.1.4. Sources of the data

For two cases, namely those of the two aquifers at Cap Pele, N. B., Canada,
the bulk of the measurement work was carried out by the author, or under
his supervision. The other data that are quoted are abstracted from the results
of work done by others, both published and unpublished. For all these the
sources will be described or acknowledged. For several cases the data given by
others have been reanalyzed to put it into a form more useful for the present
purposes.

Most of the empirical data are summarized in table 5—2 at the end of this
chapter.

5.2. Data from the Tielerwaard (Dalem and Hellouw), The Netherlands

A detailed study of the hydrogeology of the western part of the polder
Tielerwaard, along the river Waal in the Netherlands has been published in a
report entitled “De Waterbehoefte van de Tielerwaard-West” (The Water
Requirement of the Tielerwaard-west), (ed. de Ridder, Blok, and Colen-
brander, 1961). These studies include data on the propagation of tidal
fluctuations through the aquifer. and data on pump tests and other aquifer
tests. The variety and quality of the data warrant further analysis.

A simplified sketch of the hydrostratigraphy near Dalem in the Tielerwaard
is given in figure 5--2. It is based on the geohydrologic profiles given in the
Tielerwaard report by Verbraeck and de Ridder (1961). The main geo-
hydrologic units are not as homogeneous as indicated by figure 5--2, but
have been taken as homogeneous for the present purpose since the theory
that is to be applied assumes homogeneity in any case. A more detailed de-
scription of the stratigraphy has been given by Verbraeck and de Ridder, and
by Kruseman and de Ridder (1970, p. 71). The covering aquitard has a
thickness of about 8 meters, and the aquifer has a thickness of about 36
meters. .

A pump test was carried out at the location shown in figure 5—2. The draw-
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down data of this pump test have been analyzed in a variety of ways by
Kruseman and de Ridder (1970). They obtain a value for K, D, of 2000 m?/
day, and for ¢, of 450 days. Since their analyses are based on the assumption
of semiconfined flow with a fixed water table, the value of the elastic storage
coefficient which they find (2.0 x 10°®) includes the effect of storage in the
overlying aquitard. It is therefore not equal to S, butto S, +S, /3, asin-
dicated in chapter 3 (equation 3—65), and by Hantush (1960).

RIVER

LAYER 1 GROUND LEVEL ("g
(Peat and clay){ ////////‘;E 0
LAYER 2 SITE OF PUMP TEST { 20
(Fine to coarse-
grained sands) ) 1 30

1 40
A SRR R R RS
(Mustly clay _ 1 50

assumed im- b L ;
permeable) 2000 1000 0
_(meters)
Figure 5—2 The hydrostratigraphic profile in the Tielerwaard near Dalem,
The Netherlands (after Verbraeck and de Ridder, 1961)

The early time drawdown data for this pump test can be analyzed to give

S, only, by the method of Cooper and Jacob (1946) which involves a plot of
drawdown versus the logarithm of time since start of pumping, This method
is also described by Kruseman and de Ridder (1970). As indicated by the
results of Hantush (1960) the method may be applied with a fair degree of
accuracy if (r/4D,) V/(K," S, " /K8, )is less than 0.01; if u= 2§, /4K, D, t
has values in the mterval between 0 1 and 0.01; and if t is lessthan

c,S / 10 (1 is the distance from the pumped well to the observation well,

t is the time since start of pumping). Analysis with the method of Cooper and
Jacob of the drawdown data given by Kruseman and de Ridder gives

average values of K, D, = 2020 m?/day (in good agreement with the value
from ° semlconfmed analyms”) andS, =1.2x 1072

With S, +S, [3=2.0x 107 as given by Kruseman and de :Ridder, a value
for S, 1s obtamed of 2.4 x 1078, With these results checking back shows
that the conditions mentioned above for the applicability of the Cooper-
Jacob method are fairly well satisfied. ' o

Since the water table in the polder is kept well below that of the river

a measurement of the stationary hydraulic potentials in the aquifer near the
river can yield a value for the product K , D, ¢, by the method of Mazure
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(1932) (see chapter 3, equation 3—70). Colenbrander (1961) reports an ana-
lysis of this sort in the Tielerwaard report, He finds that along the Dalem
profile (figure 5-2) the value of K, D, ¢, is about 2.0 x 10% m?. If the value
of K, D, indicated by the pump test (2000 m? /day) also holds near the river,
then near the river the value of ¢, must be about 1000 days.

The geohydrological properties of the formations as found by the methods
described above are summarized in table 52,

Wesseling and Colenbrander (1961, Tielerwaard report) have given data on the
propagation of the semidiurnal tidal component (frequency 12.14 rads/day)
along the line of figure 5—2. Their results for the propagation parameters

are given in table 5—2.

Besides being subject to tidal fluctuations the river Waal is also subject to
other fluctuations in water level due to various seasonal effects, of longer
duration than the tidal motions. These fluctuations also show up in nearby
wells. Colenbrander (1961, Tielerwaard report) reports such a set of fluctua-
tions along the Dalem profile. His data are reproduced in figure 5—3a. A
simple sinusoidal function with a period of 28 days (frequency 0.225
rads/day) has been fitted to these curves with the least squares fit method
described in chapter 4 (section 4.1). The results for the propagation para-
meters between wells 2 and 4 are given in table 5--2. Inspection of the water
level data over a longer length of time shows that the motion is certainly not
periodic’'with a period of 28 days. Nevertheless the results obtained through
the assumption of a 28 day periodicity are fairly reliable because the phase
lags are very small as compared with the period of the wave so that the effect
of nonperiodicity (or initial conditions) is small. The data on this long-period
* fluctuations have been included in spite of their questionable reliability
because, compared with the tidal motions, they yield an interesting illus-
tration of two flow types in the same aquifer.

‘Wesseling and Colenbrander (1961, Tielerwaard report) also give data on the
propagation of tidal motions near Hellouw, also in the Tielerwaard. At this
point D, =6 m and D, = 44 m. Grain size analysis givesK D, =2500 m?/
day. Measurement of the stationary water levels gave K, D, ¢, =2.0x 10 m?,
resulting in a value for ¢, of about 800 days. If the specific storage coeffi-
cients are assumed to be the same as at Dalem, the values of S, and S, are
1.8 x 10 and 1.5 x 1073 respectively. These data for the Hellouw site
(summarized in table 5—2) have been given in the Tielerwaard report by

the various aunthors mentioned above with respect to the Dalem site,

An illustration of the observed water level fluctuations at Hellouw, given by
Wesseling and Colenbrander (1961) is reproduced in figure 5—3b. By the
least squares fit method these data have been analyzed for the amplitudes
and phase lags of both the semidiurnal tidal component (frequency 12.14
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Figure 5—3a Water level fluctuations in wells near Dalem in the Tielerwaard
(after Colenbrander, 1961)
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Figure 5—-3b Tidal water level fluctuations in the Tielerwaard near Hellouw
(after Wesseling and Colenbrander, 1961)
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rads/day) and of the next higher harmonic (frequency 24.28 rads/day).
The results for the propagation parameters, calculated for the data from
wells 1 and 2, are given in table 5—2.

5.3. - Data from the dune-water catchment area of Amsterdam, near Zand-
voort, The Netherlands

In connection with the development of water supplies for the city of Am-
sterdam, extensive geohydrological investigations have been carried out in
the dune-water catchment area south of Zandvoort, the Netherlands, by the
agency of the Municipal Waterworks of Amsterdam.

(m) NORTH GROUND LEVEL (dunes)
0 M.’_‘_‘fl\_{?ﬂm* LAYER 1
_20l i / (sand, clay
= r and peat)
—40 - some thin loam layers
w1
—gok — =} LAYER 2
-t —— (mustly mediom-
—100F grmned sands)
—120
~140F
R B vasas vt eaneegeerestatessSesal oty
(very fine-grained sand
and silf-assumed
1 1 — 1 . .
0 1000 2000 xm) ™MPervious)

Figure 5—4 Hydrostratigraphy and position of the piezometers along row W
in the dune water catchment area of Amsterdam near Zandvoort,
The Netherlands. The positions of the piezometers are marked by x,

The data on tidal fluctuations which will be presented here, have been col-
lected from a row of piezometers (row W, piezometer sites W1800 to W 0),
the positions of which are shown in figure 5— 4, along with the main hydro-
stratigraphic units,

The geohydrology of this region has been described by Huisman ( 1957) The
aquitard (layer 1) has been estimated by Huisman to have a vertical hydraulic
resistance of about 750—2000 days in this part of the region, and the value
of K, D, is about 4500 m? /day. The thin loam layers between —70 m and
—100 m have been estimated by Huisman to have a vertical hydraulic
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resistance between 0 and 200 days, generally increasing with distance from
the sea. The base (layer 3) is composed of very fine sand and silt and is as-
sumed impermeable.

A pump test has been carried out at a site about 4 km inland from the sea,
and roughly in line with the row of piezometers shown in figure 5—4. (Data
of this pump test are unpublished and were made available to the author
through the cooperation of A. J. Roebert and R. A. Schuurmans of the
Municipal waterworks of Amsterdam). The pumped filter was open only

to a part of the upper portion of the aquifer above the loam layers lying
between about —20 and —80 m. Analysis was performed by the method of
Cooper and Jacob (1946) as described above with respect to the pump test
at Dalem in the Tielerwaard. The analysis yields a value for the storage
coefficient of this part of the aquifer of 7.0 x 10™*. If the specific storage
of the deeper part of the aquifer (—80 to —160 m) is the same, the total
storage coefficient S, equals (140/60) x 7.0x 10 =16.3x 10™. An
accurate estimate of the storage coefficient of the aquitard S, could not be

x=0m ‘ x = 806 m x = 1760 m
Depth Phase || Depth Phase || Depth Phase
A A A
below rel lag below rel lag below rel lag
sea level (rads.) |!gsealevel (rads) 1| sea level (rads.)
(m) (m) (m)
3 <0.01° — 3 <0.01 -
16.5 0.94 | -0.008 25.4 0.27 0.71 31 0.083 1.18
25.5 1.00 .000 60.4 0.27 0.70 67 0.067 1.38
36.5 1.00 | —-.004 70.4 0.28 0.71 79.5 | 0.067 1.47
48.5 1.02 | -.014 79.4 0.26 0.72 84 0.070 | . 1.42
58.5 1.00 .001 105.4 | = 0.27 0.60 102.5 | 0.042 1.75
66.5 0.99 | —-.005 120 0.067 2.10
84.5 0.99 | —-.016

Table 5—1 Variation with depth of the relative amplitudes and phase lags of
the semidiurnal component in the deep aquifer of the dune-water
catchment area of Amsterdam (row W), near Zandvoort, The
Netherlands. The relative amplitudes (Are)) are the ratio of the
amplitude with respect to the amplitude in the piezometer at
x=0, depth = 25.5 m. The phase lags are the difference in phase
with respect to the phase in the piezometer at x = 0 m, depth =
255 m.
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made on the basis of the pump test data, although analysis by semiconfined
flow methods does indicate the effect of storage in the aquitards, In table
5—2 the values for the geohydrological properties of the formations that
have been finally been adopted are given.

Tidal fluctuations in the piezometers of row W shown in figure 5—4 were
measured during three separate 24 hour periods in February and March
1948. (The original water level data were made available to the author
through the cooperation of A. J. Roebert of the Municipal Waterworks of
Amsterdam.) The tides in the North Sea are mainly semidiurnal but at the
times of measurement the diurnal component was of large enough amplitude
to be separately considered. The amplitudes and phase constants of both
components were calculated by the one-day least squares fit method de-
scribed in chapter 4, section 4.1, relative to those in the piezometer at
—25.5 m in the piezometer site nearest the sea. The results were averaged

Phase lag (rads) In (Are|)
+ . 4 0
x—x semidiurnal component
2.5 +—2+ diurnal component

—1—0.5

20f
—1—-1.0

1.5F
—4—1.5

1.0
—1-2.0

0.5(
+1—2.5

0 -
' ‘ -3.0

i L
0 500 1000 1500
X .

Figure 5 5 Phase lags and relative amplitudes (A 1) along row W near
Zandvoort. Data are quoted relative to the piezometer at x = 0,
and at depth 25.5 m below sea level.
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over the dree days of measurement. The large number of piezometers

gives a detailed picture of both the horizontal and vertical potential distri-
butions within the aquifer.

In table 5—1 the relative amplitudes and phases of the semidiurnal com-
ponent are listed for the three points where a number of piezometers are
placed at various depths. These figures thus relate to the vertical potential
distribution. The data for the piezometers at x = 1760 m are less accurate
than the others because they represent only two days of measurement, in-
stead of three, and because the amplitudes were very small at this point
(about 2 cm). It may be noted that the piezometers above the confining
aquitard showed no measurable tidal fluctuations. The data given in table
5—2 indicate that at least within the upper part of the aquifer above the
loam layers variations of potential with height are practically negligible.
The horizontal potential distribution is presented graphically in figure 5—5
in terms of the phase lag and the natural logarithm of the relative ampli-
tude plotted versus the distance along a line perpendicular to the coast line.
The data for x = 0, 806 and 1760 m are taken as most accurate because
‘these represent the average of results from a number of piezometers at
various depths. The data for the diurnal component at x = 1760 m are not
reliable because of its small amplitude at this point (about 3 cm), and
because of the disturbing influence of other effects with an approximately
daily cycle, such as evapotranspiration or daily pumping cycles. In an other
row of piezometers (row Z), about 4 km to the south of row W, virtually
identical results were obtained for the semidiurnal component. The propaga-
tion parameters, calculated from the data for the piezometers at x = 0 and
x = 806 meters, are given in table 5—2.

5.4. — Data for a water-table aquifer at Cap Pele, N, B., Canada

Extensive geohydrological investigations have been carried out at a site on
the Northumberland Strait shoreline near Cap Pele, N. B., Canada. This
research on groundwater flow in coastal aquifers was carried out under the
auspices of the Hydrology Research Division, Department of the Environment
Canada.

The main hydrostratigraphic formations and the position of wells and piezo-
meters at this site are shown in figure 5—6. For the moment only the upper
sandstone unit will be considered and will be denoted as layer 2, in accord-
ance with the numbering system of the hydrostratigraphic model. Only the
wells and piezometers used for tidal measurements are shown in figure 5—6.
For each well filter the horizontal hydraulic conductivity was determined by
means of slug tests analyzed with the method of Cooper et al (1967) as

3
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discussed in chapter 4 (section 4.3). These values are shown in figure 5—6
beside the filters. These results indicate that in the upper sandstone unit there
is a change of horizontal hydraulic conductivity by about a factor 4 or 5 at
about 200 m from the sea. This conclusion is born out by the change in the
slope of the water table as shown in figure 5—6. The change in conductivity
leads to reflection of the tidal fluctuations moving inland through the
aquifer, as will be shown below,

WATER TABLE 7 20
GROUND LEVEL

sand-stone

clay-stone

sand-stone

clay-stone

500 4([)0 300 200 1(I)0 0
Distance from sea (m)
Figure 5—6 Hydrostratigraphic profile and position of the wells and piezo-
meters at Cap Pele, N. B, Canada. The well filters are marked by a
solid vertical line, the positions of the piezometers are marked by X.
Beside each well filter is given the horizontal hydraulic conductivity
in meters/day as determined by means of slug tests.

In the part of the upper aquifer near the sea a pump test was carried out.
Tidal effects were eliminated from the observed water level records in order
to obtain the drawdowns due to pumping, by the method described in
chapter 4 (section 4.2). Observation wells placed in various directions with
respect to the pumped well indicated no significant horizontal anisotropy.
The drawdowns are of a “delayed yield” type as described by Boulton
(1954, 1963). An analysis of the drawdowns was carried out by Boulton’s
method, with a reinterpretation of the results, as explained in chapter 3 in
connection with the effect of vertical flow in the aquifer (see the discussion
following equation 3—39). '

The results of the pump test analysis for a 1200 minute duration of pumping
are summarized in table 5—2. The average horizontal hydraulic conductivity
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calculated from the pump test results is 13.3 m/day, in faif agreement with
the slug test results of about 11 m/day for the near-sea part of the

aquifer,

Analysis of the drawdowns by the method of Jacob (1940) using a plot of
drawdown versus the square of the distance from the pumped well indicated
that the value of Sy the storage coefficient at the water table, increases with
the duration of the test even after the effects of vertical flow have become
negligible. This result is not altogether surprising since the value obtained
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Figure 5—7a and 5-7b Tidal efficiencies and phase lags in the water table
aquifer at Cap Pele, N. B., Canada. Data from piezometers near the
water table ate circled. Z” is the relative height of the observation
point (height of midpoint of filter or piezometer above base of
aquifer divided by thickness of aquifer).



81

for a 1200 minute test (S, = 0.015) is far smaller that the porosity of the
sandstone (0.22). In other words it seems that the value of S depends on the
duration of the flow.
Measurements of tidal fluctuations were carried out in all the wells and
piezometers shown in figure 5—6. The tidal efficiencies (ratio of amplitude in
the well with respect to that in the sea) and the phase lags with respect to
the tides in the sea of both the diurnal and the semidiurnal tidal components
- -were determined as an average from a number of one day observation
periods. The results for the water table aquifer are shown in figure 5—7a and
5—T7b. Since vertical variations of potential are important in this case, the
horizontal potential distribution is determined only by means of the wells
open to the bottom half of the aquifer. The reflection effects due to the
change in hydraulic conductivity at about 200 m from the sea show up
clearly. Between 176mand 256 m distance, for instance, the tidal efficiency
of the semidiurnal component drops from 0.222 to 0.017. The horizontal
potential distribution therefore must be considered as the sum of two waves:
one moving in from the sea, and one reflected back from the semipermeable
vertical boundary. The amplitudes and phases of the.two waves were deter-
mined with the method described in chapter 4 (equations 4—14 to 4-17)
which also yields values for the propagation parameters n and m (given in
table 5-2). The tidal efficiencies and phase lags calculated from a super-
position of the two waves are shown by the solid lines in figures 5—7a and
5-7b.
Also shown in figures 5—7 are the tidal efficiencies and phase lags measured
in two piezometers placed just beneath the water table. These data have
been corrected for the response of the piezometers by the method of
Hvorslev (1951) described in chapter 4 (equations 4—7). The time lag
constants of these piezometers (14 and 18 minutes) are small enough with
respect to the phase lags that the error introduced by the correction for well
response will be small. The data show that near the water table the tidal
efficiency is less than at greater depths in the aquifer, and the phase lag is
larger. These measurements of the vertical variation of potential for un-
confined flow will be further analyzed in the next chapter.

5.5. — Data from several other sites

5.5.1 — Cap Pele, N.‘ B., Canada — deep aquifer.

Measurements of tidal fluctuations were carried out in the deep aquifer at
Cap Pele, N. B., Canada, shown in figure 5—6. The propagation parameters,
calculated from the difference of tidal efficiency and phase lag between the
two observation wells, are given in table 5-2,
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A pump test was also carried out on the wells used for tidal measurements.
The observed drawdowns, after elimination of tidal effects, were analyzed

by the method of Papadopoulos and Cooper (1967) for the case when storage
in the wells is significant. The results forK D, and S_, based on the assump-
tion that flow from the aquitards is negligible, are given in table 5—2. The
value for K, (0.025 m/day) obtained in this way agrees well with the value
for K, from slug tests (0.031 m/day). Slug tests on a well in the same

aquifer about 1000 m further inland gave a value for K, of 0.06 m/day, indi-
cating that there is probably no drop in conductivity with distance away from
the sea.

Tests on a drill core gave a vertical hydraulic conductivity for the claystone
aquitard of about 2 x 10—6 m/day. Allowing a factor 15 for the extra con-
ductivity due to fractures yields an estimate for ¢, of 105 days. The value of
8, is very small, and therefore the value of S, " is assumed to be correspond-
ingly small.

5.5.2. Borden, P. E. I, Canada

Carr (1971) carried out extensive measurements of tidal fluctuations in a row
of wells near Borden, P. E. 1., Canada. He determined the tidal efficiencies
and phase lags of the two major tidal components using harmonic analysis of
sixteen continuous days of water level records. These results were mentioned
in chapter 4 with respect to the description of various methods of computing
tidal components (table 4—1). Both the tidal data and slug tests indicate that
at Borden, as in the water-table aquifer at Cap Pele, there is a drop in hori-
zontal hydraulic conductivity at some distance from the sea (between 120
and 180 meters for the Borden aquifer). The propagation parameters calcu-
lated from Carr’s data for the two wells nearest the sea are given in table
5-2. ‘ ’

The geohydrological profile at the site has been given by Carr, and indicates
a layered sandstone aquifer, and a confining claystone layer of about 5 meters
thick. The geohydrological properties of the formations, as estimated from
the information given by Carr, and from a pump test carried out about

2 km away, are summarized in table 52,

5.5.3. Olst, The Netherlands

Timmers (1955) measured the effect in a row of wells of seasonal fluctua-
tions in stage of the river Yssel near Olst, the Netherlands. He gives
graphically the amplitudes and phases of the two slowest components
(periods of 28 and 14 weeks) as determined by harmonic analysis. In
order to determine the propagation parameters these data have been reana-
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lyzed by fitting the best straight line through the data points. The results for
the propagation parameters are given in table 5—2.

The stratigraphy at the site is also discussed by Timmers. Basically it consists
of a sand aquifer about 15 meters thick, overlain by a clay layer with a
thickness varying between 0 and 5 meters, and underlain by an impervious
loam layer. The hydraulic properties of the formations as estimated from
this information are given in table 5—2.

Timmers gives a good and thorough analysis of the results. They are quoted
here because they are an example of long-term periodic fluctuations and
because they illustrate the case of unconfined flow, as will be shown in the
next chapter.

5.5.4. Prunjepolder, The Netherlands

Wesseling (1960) gives the results of measurements of tidal fluctuations in
several rows of piezometers in the Prunjepolder, situated in the south-west
Netherlands. His results for the average propagation parameters in rows 2 and
5 are given in table 5-2,

The stratigraphy at this site has been described by Wesseling (1960), and by
van Dam and de Ridder (1960). It is similar to that of the Tielerwaard as il-
lustrated in figure 5—2, except that there are some thin semipermeable layers
within the aquifer itself, and the base is probably not entirely impervious.
Van Dam and de Ridder (1960) indicate that the value of K, D, as estimated
from grain size analyses is about 400 m?/day.

For row 2 the thickness of the covering aquitard is about 8 m, and for

row 5 it is about 1 m. This difference in the thickness of the covering layers
allows observation of an interesting contrast of the results for the propagation
of tidal fluctuations, and is in fact the main reason for the inclusion of these
data. Grain size analysis at one point in row 2 as quoted by Wesseling gave a
value for the vertical hydraulic resistance ¢, of 750 days. The value of ¢, in
row 5 is estimated to be about 100 days, on the assumption that the value
of ¢, is proportional to the thickness of the aquitard. Analysis of the
statlonary potentials in the piezometers of row 5 by the method of Mazure
(1932), (equatlon 3-70) indicates that the product K,D, ¢, equals about
40,000 m?, in good agreement with the above estlmates The data are
summanzed in table 5—2. ‘

5.5.5. Oude Korendijk, The Netherlands

De Ridder and Wit (1965) reported the results of geohydrological investi-
gations in the polder Oude Korendijk, in the south-western Netherlands, in-
volving observations of tidal fluctuations, pump tests, and other methods
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of determining the hydraulic characteristics of the formations. Their results
for the propagation parameters of the semidiurnal tidal component in the
upper aquifer of row 1 is given in table 5-2.

The geohydrologic profile along row 1 has been given by de Ridder and

Wit. It is similar to the Tielerwaard profile (figure 5—2), except that the base
of the upper aquifer is a layer of clay and fine sand only about 6 to 12
meters thick beneath which is another aquifer. For the analysis of the tidal
data it will be assumed that flow in this base is negligible. A pump test and
other tests, as quoted by de Ridder and Wit, give a value for K, D, of the
upper aquifer of 300 m? /day. The value of ¢, is estimated by de R1dder

and Wit to be about 1600 days on the basis of laboratory tests on undisturbed
samples. Another pump test in the vicinity, with the same thickness of the
upper aquifer, has been analyzed by Kruseman and de Ridder (1970, p. 69)
who arrive at a value for S, of 2 x 10—4. The geohydrological characteristics
of the formations are summarized in table 5—2.

5.5.6. Summary of the empirical results

Empirical results from the sites described above are summarized in table
5—2. Several remarks must be made about the data presented in the table,
Estimates of the possible error are indicated by means of asterisks and
brackets. No asterisk or bracket means that the figure quoted is probably
accurate to within 10%. One and two asterisks indicate possible errors of
30% and 50% respectively. Brackets around a figure indicate that it is no
more than an estimate, probably accurate to within an order of magnitude,
and possibly fairly reliable. These estimates of the possible errors are based
on a rather subjective evaluation of a variety of factors, but should give a
good indication of the reliability of the data.

The value of S is unknown for all cases except that of the water table
aquifer at Cap Pele Prickett (1965) quotes data for S from a number of
different pump tests, varying from 0.005 for a 3- hour test to 0.25 for longer
tests. In view of the variation of S| with the duration of the flow, S| has
been estimated as 0.01 for tidal fluctuations, and 0.1 for the fluctuations with
longer periods at Dalem and Olst.

The value of the specific storage coefficients of the aquitards, S, ', where
not known, has been estimated at 2 x 10~* m—', and the value of S, cal-
culated accordingly Similarly the value for the specific storage coefficient
of the aquifers, S , where not known, has been estimated at

2x10—° m—!,

The vertical hydraulic conductivity of the aquitards, K Where not known,
has been estimated at 0.01 m/ day, and the value of c, = / K calculated
accordingly. The value of K , where not known, has been estlmated at
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0.1 x K, (horizontal-vertical anisotropy of 10) and czAcaléulated accor-

dingly,

No data are quoted for the underlying aquitard, layer 3. In all cases very
little data on this layer are available, and it is assumed either to be imper-

Geohydrological characteristics of the formations Propagation para-
SITE from drilling and tests other than those utilizing meters for periodic
periodic fluctuations fluctuations
D1 D2 K2D2 So Sl 52 ¢ c, freq. | n m
(m) | (m) | (m?/day) 0™ | (104 | (days) | (days) || rads | (m™x | (mlx
day | 10%}10%
Zandvoort 17 {140 { 4500 O | (34 | 16* 1000** <00 || 12.14| 1.62 | 0.86

N 6.07 | 1.07 | 0.67
Tielerwaard 6 | 442500 (.01) 18* | 15%* 800 | (8 24281 27 11.9
(Hellouw)

B 12.14 | 2.0 1.6
Tielerwaard 8 | 362000 o1 24% | 12¢ |1000 | (1) 1214 2.37 | 1.70

(Datem)
sy (0.10) 0.225 | 0.82 | 0.16*
Cap Pele 0] 21] 280 .015* 0 2% 0| 75% 12.14 } 104 | 3.0
(water table) :
’s 6.07 | 8.7 2.7
Cap Pele 30 81 0.20* 015*%| (0.6) | .03**| (10%) (1800) || 12.14} 12.1 | 4.76
(deep)
’ 6.07 | 9.01 | 3.64
Borden 5% [ 15%) 4% (01 | (10) | 1.3**|(500) | (55) {| 12.14| 7.72 | 8.37
) 6.07 | 5.50 | 6.57
Olst 2% 15%| 750** [ (10) | D | (3) [QROD | (3 0.028 | 2.2* | 0.64*
3 0.014} 1.6 | 1.02
Prunjepolder[| 8* | 40*| 400* 0D 16) | (8 750% | (40) || 12.14 | 4.4 | 2.7
2

Prunjepolder|{1** | 40%| 400* o1 | (8 1100* | 40) || 12.14| 5.6 | 2.0
)

Oude Koren-|| 18 | 8 | 300* o1 | (36) 2% [1600*F (2) || 12.14| 2.9 | 1.7
dijk

Table 5—2 Summary of the empirical data. Possible error is indicated by
asterisks and brackets as follows: no asterisk — possible error
less than 10%, one asterisk —30%, two asterisks —50%
brackets — order of magnitude estimate




86

vious, or to have hydraulic properties similar to that of the covering aqui-
tard. No data are available on the horizontal hydraulic conductivity, | of
the covering aquitard.

It should be noted that some of these estimates are only required to
determine the flow type, as will be shown in the following chapter. In
many cases they are sufficiently reliable for this purpose, even when they
involve a large possible error, '



6 — THE RELATIONSHIP BETWEEN THE THEORETICAL AND
THE EMPIRICAL RESULTS

6.1 — Introduction

In the foregoing chapter (chapter 5) the empirical data from a number of
different sites have been described, and have been largely summarized in
table 5—2. These data consist of both information on the geohydrological
properties of the formations determined by methods other than those
utilizing periodic fluctuations, and of data on the propagation of periodic
fluctuations through the formations. This chapter is concerned with an
analysis of the relationship between these data and the theory of the
propagation of periodic motions presented in chapters 2 and 3.

The purpose of this chapter is twofold. The first and more important
question to be considered is: to what extent can the theory account for
the flows encountered in practice? The second and closely related question
is: how can the theory best be applied in the practical problem situations
encountered by the geohydrologist? In this chapter an answer to both
these questions will be attempted.

The relatively small number of empirical cases presented (eight sites in
all) do not of course allow for an exhaustive check of the theory. They
do however indicate the major points of agreement and of discrepancy
between the theoretical and the empirical results, and serve to illustrate
the application of the theory.

6.2 — Short review of the theory

6.2.1. — The form of the potential distribution

In chapter 2 a general form of the potential distribution has been given for
the case of a simple sinusoidal motion under certain assumptions. This form
is (equations 2—59):

hj (x,z,t) = gj(D)f(x,t) 61
where the subscript “j”” refers to the number of the layers as given in the
hydrostratigraphic model (figures 2—1, 3—1, 5-1).

The form of the potential distribution expressed by equation 6—1 and
the further theory based on it are applicable for points sufficiently far
away from the boundaries if the aquifer (layer 2 in this case) is thin,
satisfying the condition (2—52):

wsz c, <1 6—2a
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and if the deviations from gj(z) of the vertical potential distributions at

the boundaries are not large. The region far away from a boundary at say

x =x, is described by the condition (2—51): '
1

x-x, >(K,D,c) ? 6—2b

where x increases away from the boundary. This condition can be relaxed
if the vertical potential differences in the aquifer are very small, i.e. if
gj(z) is very nearly a constant. In fact for such cases equation is likely

to be applicable even very near the boundaries,

6.2.2 — The horizontal potential distribution
The horizontal potential distribution f(x,t) has the form (equation 2—17):

px, iwt

P e 6—-3a

X —_
f(x,) =(A;e” +Ae

where
p=n+im 6~3b

The propagation parameters n and m are real numbers with n defined to be
always positive. They can be determined through measurement of the poten-
tial fluctuations in a row of observation points, as described in chapter 4,
sections 4.1 and 4.4. However the form of f(x,t) as given in equation 6—3a
is itself a theoretical prediction which should be empirically checked. Such

a check is best carried out for the case were there is only one (straight-line)
source of the fluctuation, and no reflection effects, for then equation 6—2
reduces to the simpler form (with x increasing away from the source):

. —px iwt
f(x,t)= Ae e 6—4a

~nx i(wt-—-mx)
=Ae e 6—4b

The amplitude then decreases exponentially with x, and the phase lag (mx)
increases linearly with x.

6.2.3. — The equations for the propagation parameters

In this section some of the more important equations relating the propa-
gation parameters n and m to the geohydrological properties of the
formations will be reviewed. The validity and applicability of these equa-
tions are the main concern of this chapter,
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Detailed solutions for the potential distributions and the propagation para-
meters are given in chapter 3. Some of the equations for n and m are given
here for the special case when layer 1 is an aquitard. Particular attention

is paid to the various conditions which must be satisfied for a particular
set-of equations to be applicable. These conditions form an important

part of the theory as developed in chapters 2-and 3, and their relevance must
be checked on the basis of the empirical results. -

In the following summary the symbols “<< and “>>” mean “small as
compared to” and “large as compared t0”, and will be taken to mean that
the quantities being compared differ by at least a factor 10.

The equations and conditions for n and m are enumerated below. For a
detailed discussion of their derivation and significance the reader is referred
to chapter 3.

a) General conditions
The following general conditions have to be satisfied in all cases:
(1) (layers 1 and 3 aquitards):

wS /K >>p*| 6—5a
¥

w8,'[Ky >> Ip’| 6-5b
(ii) (layer 2 “thin” and layer 3 “thick”):
w32 02 <1 6—6a
st G >> 1 6—6b
b) Confined flow
The flow is confined if the following condition is satisfied:
(i) (layer 1 thick):
wS ¢, >>1 67

If in ad dition the following conditions hold:
(ii) (vertical potential gradients in layer 2 negligible):

1
1y N2 —
302((.03l K1 ) <1 6—8a

1
vy -\ 2 —
3¢, (w8, 'K, ? << 1 6-8b
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then the following equations are applicable:

1 1
n-m? = L [(wS,"K;"/2)? +(@S,’K;'[2)?] 6~9a
K2D2 ' '
wS :
2nm =—2-+ [(wS,'K,"[2)? +
K2D2 K2D2 .
| Iy | ';
+(wS,'K,'[2)?] 6-9b

If in addition to conditions 6—7 and 6—8 the following condition holds:
(iii) (effect of flow in aquitards negligible):
1 1
ty -t 2 y -t 2
wS, >> (WS, K,'/2)* + (wS, K, /2) 610

then equations 6—9 reduce to:

n = m 6—-11a’
wS

2nm = 2 6—11b
2D2

¢) Semiconfined and unconfined flow
If the following condition is satisfied the flow is not confined:
(i) (layer 1 “thin™):
WS¢, < 1 6-12

If the following conditions hold:

() S, >>S +8, , 6—13a
K,D, <<K,D, 6—13b
(flow in layer 3 negligible):
! ‘
WSy >> (1+wS c)) (wS,'K,"H? o 6—13c

(vertical gradients in layer 2 small):

(wSyc,)* < 1+(wS 'y 6—13d
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where ¢’ = ¢, +¢,/3 as defined in previous chapters, then the following
equations for the general case of semiconfined or unconfined flow hold:

2qQ 2.t
Pomia 0 | 6-14a
K,D, (1 + w?S2c?)

wS (1 +wS, &S, ¢, /3+wS, ¢
2nm= 0( 0 )( 1 1/.2 - -2 ) 6'—14b
K,D, €1 +w?S %c"?)

If in addition to conditions 6—12 and 6—13 the following conditions hold:
(i) wS ¢ >> 1 6—15a
wSyc' (&8, ¢ [3+wS,¢") >> 1 6—15b

then the flow is SEMICONFINED and equations 6—14 reduce to:
1
KD ¢

272

n? —m?= 6—16a

wS. ¢ [3+wS. ¢
2nm = —11 2 6—16b
K,D,c
Note: If the water table is held fixed, as by drainage, then S can be taken
as very large and conditions 615 always hold.
If in addition to conditions 6—12 and 6—13 the following conditions hold:

() wSyc'(wS ¢, /3+wS, )<< 1 6-17

then the flow is UNCONFINED and equations 6—14 reduce to:

w?S 2¢
2 —-m = o 6—18a
2q 202y
KD, (1+w*S *c*)
_ wSo B
2nm = 6—18b

2qQ 2,012y
K,D,(1+w?S,2c'?)

These conditions and equations provide a short review of some of the more



92

important results of chapter 3. A particular pair of equations for n and m is
only applicable in a given situation if all the corresponding conditions are
satisfied. The quantities involved in the conditions can be estimated from the
results of drilling and other aquifer tests. The empirical cases that are
presented in this chapter function in part as examples of how the above con-
ditions and equations can be applied in actual cases,

6.2.4 — The vertical potential distribution
The vertical potential distribution gj(z) has the form (equation 2—19):

qu

q:Z —
gj(z)=B1je J +B,je 6—19

For aquitards defined as by conditions 6—5, q j is given by (equation 2—55):
2 = J N —
qj 1wS] /KJ 6—20

For thick aquitards defined by a condition such as 6—6 either B,jorB.jin
equation 6—19 is very small as compared to the other, and the vertical
potential distribution than takes a particularly simple form, which can in
principle be checked empirically. Two difficulties usually stand in the way
of such a check however. For one, the low hydraulic conductivities of
aquitards make for special difficulties in the measurement of changes of
hydraulic potentials. Also most naturally occurring aquitards are not
homogenous (as assumed in the derivation of equation 6—19), but strongly
layered (de Ridder and Wit, 1963; Wolff and Papadopulos, 1972). No data
on periodic potential fluctuations within aquitards are available to the author,
so that the validity of equations 6—19 and 620 cannot be directly
checked. )

For confined flow the vertical potential distribution within the aquifer,

g, (2), reduces to a constant (put equal to unity) when conditions 6—8 hold.
When conditions 6--8 hold less strongly (a “<’ sign substituted for the
“<<7 sign) g, (2) is a quadratic function of z, if the aquifer is homogeneous.
In practice the vertical hydraulic resistance of the aquifer, c,, is usually
mainly due to a few thin semipervious layers within the aquifer, and the
vertical potential differences, if any, are then largely concentrated across
these layers.

For semiconfined flow and especially for unconfined flow vertical flow
from or to the water table is significant, and the vertical potential gradients
within the aquifer are often important. In fact, when the flow is unconfined
and the conditions for equations 6—18 are satisfied, then the vertical potential
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distribution within the aquifer is given by:

] i . 2 .
_wsocz(wsoc +D(z~z,) 621
(1+w?8,%c?) 2D,% -

8,(2) = g,(z,) {1

This equation will be applied at a later point in this chapter to the case of
vertical potential differences in a water table aquifer.

6.3 Evaluation of the theory on the basis of the empirical data

6.3.1 — Points of comparison between theoretical and empirical results

The short review of'the theoretical results given in the previous section
indicates some of the major points at which the theoretical prediction can be
empirically checked. _

Firstly there is the general form of the potential distributions as given in
equations 6—3a and 6—19. The equations for n and m are based on these
forms of the potential distributions. Thus the first point on which the
theory must be checked is whether the observed potential distributions
are as expected by theory. In practice reliable observations on the vertical
potential distributions are difficult to obtain, and the empirical check is
largely restricted to the horizontal potential distribution. If the horizontal
potential distribution is of the form given in equations 6—3a or 6—4 then
the horizontal propagation parameters n and m are well defined and can
be determined from the measurements.

The equations for n and m can be checked on several points The fre-
quency dependence of n and m as determined through measurements can
be compared with the theoretical prediction. In addition, the theoretical
relation of n and m to'the geohydrological properties of the formations
can be checked if these properties are known from other types of

aquifer tests. Also it should be possible to verify through the empirical
results whether the various conditions which describe the ranges of
validity of the equations for n and m are indeed reliable,

The empirical data that are presented have been selected with an eye to
obtaining a wide variety of flow types, frequencies, and stratigraphies, in
order to check the theory and illustrate its application for a wide range of
situations.

It should be mentioned that other authors have also reported such compari-
sons of theory and empirical results for the propagation of periodic fluc-
tuations. Among these are: Timmers (1955), Wesseling (1960), van Eyden
et al (1963), de Ridder and Wit (1965), Trupin (1969), Wesseling and
Colenbrander (1961), and Carr (1971).
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6.3.2 — The horizontal potential distribution
The horizontal potential distributions observed in practice often do not
agree very well with the form expressed by equation 6—4b which states:

f(x,) = A,e e (cot—mx)

622
Such discrepancy is for instance evident in the results reported by Wesseling
(1960), and Carr (1971), or for the upper aquifer at Cap Pele (see figures
5--7). The discrepancies can usually be accounted for by the curvature

of the shoreline, or by changes in the geohydrological properties of the
formation, as is the case in the upper aquifer at Cap Pele. Where such ef-
fects can be expected to be small the observed potential should conform
to equation 622 or 6—2.

The Zandvoort site as described in chapter 5 has a very straight shoreline
and a uniform hydrostratigraphy, and therefore qualifies as a good test
case for equation 6—22. The variations with distance from the shoreline
of the amplitude and phase lag of the semidiurnal tidal component are
illustrated in figure 5—5. These empirical results agree very well with the
form of equation 622, Over a distance of 1760 meters(with the relative
amplitudes going from 1.00 to 0.066 and the phase lags from 0.00 radians
to 1,55 radians) the plots of phase lag and In (amplitude) as given in figure
5-5 follow almost exactly the straight lines predicted by equation 6—22.
Van Eyden et al (1963) found agreement with the form of equation

6-22 for two sand aquifers in the south-western Netherlands, and Wesseling
and Colenbrander (1961, 1972) report similar results for the (Dalem) Tieler-
waard site. These results indicate that equation 622 and by extrapolation
equation 6—2 indeed describe the horizontal distribution if the conditions
of a straight and long source and uniform hydrostratigraphy are satis-

fied. '

The propagation parameters n and m as given in table 5—2 have been cal-
culated on the basis of equation 6--22 or 6—2. The meaningfulness of the
figures for n and m thus arrived at is also indirectly confirmed if further
calculations based on them give meaningful results. That such is indeed the
case will become evident in the next sections.

Since the vertical potential distributions depend on the flow types, they
will be discussed together with the analysis of the equations for n and m
for each flow type separately. For the few cases where data on the vertical
potential distribution are available, a comparison with the theoretical
prediction will be made.
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6.3.3 — Determination of the flow type

The first step in the analysis of data on the propagation of periodic fluctua-
tions is to determine which, if any, of the equations for n and m are ap-
plicable to the given situation. Thus, first of all, the general conditions for
the applicability of the theory must be checked (conditions 6—5 and 6—6),
and the flow type must be determined.

Condition 6--5a states:

wS,"[K, >>p*| 6-23

For the sites described in chapter 5 this condition probably holds in every
case. An exact check is not possible since little or no data on the horizontal
hydraulic conductivity K, of the aquitard are available, But one might con-
sider for example the case of the data for the Olst site, where the frequency
is very low, and condition 623 is least likely to be satisfied. Assuming

K, =10K, ' gives(see table 52 for the Olst data):

0.014x2x 10~ /0.1 =
28x1075m 2
(1.6% +1.022) x 10 =
37x 1076 m™2

Condition 6—23 is therefore probably satisfied for the case of the periodic
fluctuations at Olst. For the other sites with higher frequencies condition
623 certainly holds unless K, is improbably large. No data for the bottom
aquitard layer 3 are available, but since K, is, for most or all of the cases,
probably smaller than K, condition 6--5b is probably satisfied. Thus con-
dition 6--5, defining layers 1 and 3 to be aquitards, may be safely assumed
to hold.

Condition 6—-6b defining layer 3 to be thick cannot be checked for lack of
data on the geohydrological properties of layer 3, but it probably holds for
most or all of the sites. In any case further analysis will be carried out on
the assumption that this condition is satisfied, although some error may be
introduced on this account, partlcularly for the cases of Olst and Oude
Korendijk.

The aquifer, layer 2, must be thin, i.e. condition 6—6a which states that

the quantity wS, ¢, is less than unity must be satisfied. Values of wS,c,
calculated from the data given in table 5—2 are tabulated in table 6—1.
Condition 6--6a is satisfied for all the sites except Zandvoort, where ¢, in-
creases with distance away from the sea (see section 5.3), and the theory

(Olst) w8, "/K,

%

Ip
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may not be applicable for the observation points furthest away from the
sea,

The restriction to points far away from the shoreline as expressed by
condition 6—2b can probably be ignored for the sites at which wS, c, is
very small (see section 6.2.1). It may be important however for the
Prunjepolder sites and the Zandvoort site since the relatively large values of
wS, ¢, at these sites implies that the vertical potential differences in the
aquifers near the shoreline may be large at these sites. The restriction may
also be important for the upper (water table) aquifer at Cap Pele, since the
vertical potential differences due to vertical flow to or from the water table
in this aquifer are likely to be significant. For all the sites the data for n and

FREQ w , | (8,0 n*~m?| 2nm
SITE (rads | @528 ||wS ¢ | wS,e (wS(l)cl /3 | FLOW aes | ao®
' TYPE
/day) +w§, ¢) m2) m2)
Zandvoort 12.14 | <3.9 @) (129)| (4400) C 1.88 2.79
o 6.07 |<L9 (21) (65) (1100) C 0.70* | 1.43*
Tielerwaard 24.28 (.29) 35% (195) (8000) C 3.7* 10.2*
(Hellouw)
- 12.14 (.15) 17* (€] (2000) C 1.5% 6.4
Tielerwaard 12.14 (.10) 29% (122) | (3000) C 2.7 8.1
(Dalem)
» 0.225 |(.002) 0.54*| (22.5)| (10.2) S 0.64* | 0.26*
Cap Pele 12.14 18*%* 0 4.6** 0.28** U 100 62
(-upper) ‘
» 6.07 09 ** 0 2.3%% 0.69** U 70%- | 48*
Cap Pele 12.14 - | (.07) (73) |(18000) 5.0x10° C 124 115
(lower)
” 6.07 |(03) (36) [(9000) 1.3x10° C 68* 66*
Borden 12,14 | (.09) 6.1) (63) (180) CorS |f -11* 129
» 6.07 |(.04) (3.0) 31 (45) CorS || -13* 72
Olst 0.028 | (2.5x10-%) || (002)| (0.56)] (.0014) U 4.4%* | 2.8%*
» 0.014 [(1.3x10-%) ]| (00D)| (0.28)| (.0034) U 1.5% | 3.3%
Prunjepolder |(12.14 {(.39) (15) (93) (1100) C 12.3* | 24.0
) '
Prunjepolder [[12.14  |(.39) 0.24)} (14 \(16) S 27* 22%
(%)
Oude Korendijki| 12.14 | (.005) (70) (194) | (5300) C 5.5 9.9

Table 6—1 Determination of the flow type (C — confined flow, S — semiconfined
flow, U — unconfined flow). The possible errors are indicated as for
table 5—2: no brackets or asterisks — + 10%, one asterisk — + 30%,
two asterisks — + 50%, brackets — order of magnitude estimate.
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m have been calculated on the assumption that all the observation points
are sufficiently far away from the shoreline.

The flow type itself is determined by a few characteristic numbers as fol-
lows (see section 6.2.3):

The flow is confined if:

w8 ¢, >> 1 6-24

The flow is semiconfined if:

wS c <1 6—25a
wS, ¢ >> 1 ' 6-25b
WSy (@S, ¢,/3 +wS c)>> 1 6—25¢

The flow is unconfined if:
coS1 ¢, <1 . 6-26a
w8, ¢ (@8, ¢,/3+wS, )<< 1 6—26b

The three characteristic numbers appearing on the left hand side of these con-
dijtions can be calculated from the data for the geohydrological characteristics
of the formations obtained from tests other than those involving periodic
fluctuations, as tabulated in table 5—2. The results of this.calculation are sum-
marized in table 6—1 together with the flow types as determined by the above
conditions, Because of the possible error involved in the estimates of the
characteristic numbers, the decision as to the flow type is doubtful in some
cases. For the two cases of semiconfined flow for instance (Tielerwaard, Dalem,
w = 0.225 rads/day; and Prunjepolder 5) it is possible that condition 6-25c is
in fact not fully satisfied. Analysis of the data for periodic flow can yield an
additional check on the flow type in some cases as will be shown at a later.
point, ,

For the cases of Borden, and strictly speaking, for the upper aquifer at Cap
Pele with w = 12.14 rads/day, the flow type does not fall into one of the
three categories that are used. For the Borden case further analysis of the data
for periodic flow cannot resolve the question of flow type, as will be come
apparent later, For the Cap Pele case the flow type will for the present be as-
sumed to be simply confined.  The results of the periodic flow analysis on
this basis will indicate whether this assumption is in fact correct. Here, as
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elsewhere at further points, the most simple possible case is assumed to hold
until further evidence is presented.

Also given in table 6—1 for further reference are the quantities n> — m? and
2nm, since these crop up repeatedly in the equations for n and m.

A number of subsidiary conditions must also hold if the special equations
for n and m for the various flow types are to be applicable. These conditions
will be considered in connection with the analysis for the different flow types,
as given in the following sections.

As has been mentioned before, the criteria for the different flow types as
given above are themselves theoretical results whose validity will be checked
on the basis of the empirical results.

6.3.4. — Confined flow

In this section the theory for confined periodic flow as'summarized by con-
ditions and equations 6—7 through 6—11 will be evaluated on the basis of
the empirical results. The relevant data and the results of the various cal-
culations are summarized in table 6—2. Data for some of the cases of semi-
confined and unconfined flow are also included as part of the investigation
as to whether condition 6—7 (or 6—24) does indeed describe the range of
validity of the equations for confined flow,

(a) Subsidiary conditions

For equations 6—9 or 6—11 for confined flow to hold, conditions 6—8
relating to the importance of vertical potential gradients in the aquifer must
hold. Since no data for layer 3 are available only condition 6—8a which
states:

1
! N2
3¢, (WS!1K,)? << 1 627

will be investigated. The quantity S_ ‘K" is probably not greater than

S, 'K1 !, and thus condition 6—8b holds if condition 627 (or 6—8a) holds.
In column 4 of table 6—2 the quantity 3c, v (wSl'Kl' ") is tabulated as cal-
culated from the data for the geohydrological properties of the formations
as given in table 5—2. These figures indicate that condition 627 is pos-
sibly not satisfied for some of the cases of confined flow.,

For the case of Zandvoort data on the vertical variation of potential within
the aquifer are available. They are tabulated in table 5—1 in terms of the
variation with height in the aquifer of the amplitude and the phase of the
semidiurnal tidal component. These data indicate that within the upper
part of the Zandvoort aquifer (20 to 80 meters below sea level) there is
little or no vertical variation of potential. Now the quantity ‘302:\/ (wS, 'Kl' "
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* for the upper part of the aquifer only, can be estimated with the assumption
K2' ="0.1K, tobe about 0.3, so that indeed according to condition 627
little vertical variation of potential would be expected. On the other hand
at x = 1760 meters, the loam layers separating the upper and lower parts of
the aquifer probably have significant vertical resistance (up to 200 days) so
that at this point the value of 302\/ (wS, K, " for the whole aquifer may ap-
proach the maximum values indicated in table 6—2. The data of table 5—1
do indicate some vertical variation of potential at x = 1760 m. These data
for the Zandvoort aquifer would seem to indicate that conditions 6—8 do
indeed describe the case of negligible vertical potential va-iations.

For the present the analysis will be continued on the assumption that con-
ditions 68 are satisfied for all the cases of confined flow, according to the
principle of trying the least complicated possibility first. An equation for
confined periodic flow including the effect of vertical potential gradients
in the aquifer has been given in chapter 3 (equation 3—20), so that an
analysis including these effects is possible if necessary.

If condition 6—10 which can be written

1 1
N Per IS 9.
6KNE 6D

1 1
2 S, Qw);i
5, Qw)? , Qw2

<1 6—28

is satisfied then the effects of flow in -the aquitards is expected to be
negligible and equations 6—11 hold. The quantity V/(S, 'K, ’/2w)S, !

is tabulated in column 5 of table 6—2, as calculated from the data in

table 5—2. These figures indicate that condition 6—28 is in no case clearly
satisfied. It would seem therefore that for the analysis of the data for n and
m equations 6—9, which include the effect of flow in the aquitards, must be
applied.

(b) The equations for n and m

Equations 6—9 can be written in the form:

1 1
6,'K;H?/K,D, = (n® —m?)/(wf2)? 6—29a
S,/K,D, = (2nm— n? + m?)/w 6—29b
Here the important and risky assumption has been used that the lower aqui-
tard is impervious, partly for the simple reason that no independent data for

this aquitard are available, Equation 6—29b is not effected by this assumption,
but the value of V(S . K,)/K,D, calculated with equation 6—29a from the
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measured values of n and m may be too large for cases where the flow in
layer 3 may not be negligible.

Equations 6--9 have been rewritten in the form of equations 6—29 because
the right hand sides of equations 6—29 should be independent of frequency,

1 2 3 4 5 6 7
[} E. !‘ .
, 1| 5, K, )2 /K,D,
SITE FREQ w| FLOW (3c,. (*’Sl ) .
ros (100'm™? a4 2)
(rads TYPE (wsllKl) 2 2w
[day) SZ periodic |other
Zandvoort 12.14 c | <369 (.24) 7.7 4.1)
N 6.07 c | <eD | 3 4.0% .
Tielerwaard 24.28 c (.18) .14 10.6* 6.0*
(Hellouw)
12.14 c ¢13) .20% 5.8% ”
Tielerwaard || 12.14 C 11 26% 11.1 7.7*
(Dalem)
Cap Pele 12.14 C (.46) .7 502 (1200)
(lower aquifer) 6.07 C (.33) 2.5) 390%* '
Prunjepolder (2) || 12.14 c .61) 3.7 50* (30
Oude Korendijk || 12.14 C (.03) (1.4) 22.4 (50)
Tielerwaard 0.225 S (.015) (1.9) 19.3%%| 7.7%
(Dalem) ‘ :
Borden 12.14 | CorS | (81 2.2) -42% (3500)
» 607 | CorS | (57 (3.1) 74% .
Prunjepolder (5) 12.14 - S .59) (3.6) 111* (35)
Cap Pele 12.14 U - - 402 0
(upper aquifer)
" 6.07 u - - 393* | 0
ot 0.028 U - - 374%* 1 (18)
" 0.014 U - - 182+ ”

Table 62 Data for the evaluation of the confined flow conditions and
equations on the basis of the empirical results. The possible error
and the flow type are indicated as in Table 6—1.
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and involve only data related directly to the propagation of the periodic
fluctuations. A good test of the theory can thus be carried out with equations
6-29.

The quantities\/ (8, 'Kl' g /K,D,and S, /K D, ascalculated with equations

1 8 9 10 11 12
SITE Sz/KzDz 2nm/w wSl o
(x107 d m?) (x10”7a.
m? )
periodic other periodic ogher
Zandvoort 0.74* 3.6% 2.3 143%* 41)

’s 1.2% » 2.4* 20** (21)
Tielerwaard 2.7% 6.0 4.2% 110%** 35%*
(Hellouw)

" 4.1* » 5.3 18%* 17*
Tielerwaard 44 6.0* 6.6 58* 29*
(Da[em)

Cap Pele -7.1%* 150** 95 (12) (73)
(lower aquifer)

. ’ (-3.9) v 108* (3.7) (36)
Prunjepolder (2)§| 9.6* 20) 19.6 27%* (15)

| Oude Korendijk 3.6* 6.7%* 8.1 14%* (70)
Ticlerwaard -17.1%* 6.0* 11.7*%% | 3,3%* 0.54*
(Dalem)
Borden 115 (320) 106 - (6)

- 140 " 119 - 3)
Prunjcpolder (5) |} 4.1* (20) 18.5* 2.3) (0.24)
Cap Pele : -30%* 7.1*% 1000 0 0
(upper aquifer)

” -35%* ' 2400* 0 0
Olst -577%* 4) S1** 0.9) (.002)

” 1250** ” TT** 0.1) (.001)

Table 6—2 (continued)
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6—29 from the measured values of nand mare tabulated in columns 6 and 8
of table 6—-2. For comparison the same quantities calculated from the results
of other tests as given in table 5—2 are tabulated in columns 7 and 9.

For the present only the cases of confined flow will be considered. The first
point to be noted is that the results from periodic flow given in columns 6
and 8 exhibit a frequency dependency which can probably not be accounted
for by the possible error only. Secondly, the agreement with the results of
other tests is not particularly good, especially for the case of the quaritity
S,/K,D, , where the possible error cannot account for the discrepancies.
This disagreement between theoretical and experimental results may be in

1 2 3 4 5 6 7 8
! ’
SlC1/3+Szc K2D20
14
SITE FREQ w|FLOW B K2 D2c (x105 m2)
(rads/ |TYPE )
/day) (x1077 day’m?)

periodic| other |periodic{ other

. Tielerwaard 0.225 S (5x10‘5) 11.7* 10* 15.5% 20
! (Dalem)

Prunjepolder(5) | 12.14 S (.12) } 18.5% (21) | 0.37* A5%*

Tielerwaard 1214 | "c | (5x10)| 6.6 10« [ 37 | 20
(Dalem) .

Prunjepolder (2)] 12.14 c | (3x10%)] 19.6 (33) | 0.83*% | 3.1%%
Zandvoort 12.14 C | (016) | 2.3 (5.9 | 5.3 48%*
. 6.07 Cc | (016) | 2.4% N 14.4% »
Cap Pele 12.14 U | 8.6* |51.4 | 7.%+] 0.10 .070*
. 6.07 | U | 75% |77.4% | 0.15% N
Olst 0.028 U | (5x10°%)| 1005**| (5.8) | 2.26%*| (1.5)

N 0.014 U | @x10%)| 2300% | 6.6*

Table 6—3 Evaluation of the equations and conditions for semiconfined flow
on the basis of empirical results, The possible error and the flow
types are indicated as in table 6--1. The quantity B in column 4
equals w?S 2¢? (1+ w?8 2c2) L.



103

part due to the effects of flow in the bottom aquitard, and of vertical
potential gradients within the aquifer, but it seems unlikely that these can
account for all of the observed discrepancy, as further inspection of the
data in table 6—2 shows.

It would seem from these results that the reliability of equation 6-29a is

at best questionable, while equation 6—29b is simply not applicable in many

cases,

The possibility remains that not equations 6—9 but equations 6—11 should
be applied. These equations for the case of negligible flow in the aquitards
can be written:

n? —m? = 2nm 6—30a
S, /K2 D, = 2nm/w 6—-30b
1 2 3 4 5 6 7
SITE FREQ w | FLOW 8,¢ K,D ¢
(rads / TYPE (days) (x10°m?)
/day)
periodic other periodic other
Cap Pele 12,14 U 0.13 0.38%* .072 .070*
(upper aquifer)
' 6.07 U 0.25 - .099* '
Olst 0.028 U 57%* (20) 1.6** (L.5)
’ 0.014 U 33% " 1.2%* uy
Tielerwaard 0.225 S 11* (100) 13.3*l 20
(Dalem)
Prunjepolder (5) 12.14 S 0.10%* (1.2) 0.22%* L45%*
Tielerwaard 12,14 C .028 (100) 0.38 20
(Dalem)
Zandvoort 12.14 C .056 (11 1.67 48**
. 6.07 C .079* . 2.74* "

Table 6—4 Data for the evaluation of the equations and conditions for un-
confined flow. The possible error and the flow type are indicated
asin Table 6—1
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As was already shown, the condition 6—28 (or 6—10), which must hold if
these equations are to be applicable, is probably not satisfied for the cases
treated here, Inspection of the values of n? —m? as given in table 6—1
shows immediately that equation 6—30a is at any rate not satisfied for the
confined flow cases. Thus the previous conclusion that the effect of flow
in the aquitards is not negligible would seem to be corroborated.

In column 10 of table 62 the quantity 2nm/cw is tabulated. It can be seen
that this quantity turns out to be very nearly independent of frequency, as
would be expected if equation 6—30b holds. In addition comparison with
the values of S, /K,‘,D2 calculated from other tests, as given in column 9,
shows good agreement in every case. Judging by the empirical data then, it
would seem that equation 6—30b may well be generally valid for confined
flow,

These empirical results are difficult to account for theoretically. It may
well be that the strongly layered character of the aquitards is significant, and
that the aquitards cannot be assumed homogeneous as was done in the
development of the theory given here. It is also possible that the release of
water from elastic storage is not exactly proportional to the changes of

* hydraulic potential, but involve a “hysteresis” effect that cannot be ne-
glected.

(¢) The criteria for confined flow

The relevance of the condition for confined flow (condition 6—7):

coSlc1 >>1 6--31

can also be checked on the basis of the data given in table 6—2.
In column 11 of table 62 are given values of wS, ¢, calculated from the
data for n and m through a modified form of equation 6—29a:

wS ¢, =2An’—m?)*(K,D,c ) ' 6--32

The results of this calculation for the confined flow cases agree to some
extent with the values of wS . ¢, calculated from the results of other tests
as given in column 12, and all satisfy condition 6—31. To this extent the
theory is consistent even if the reliability of equation 6—32 is somewhat
in doubt,

For the cases of semiconfined and unconfined flow the values of wS ¢
calculated with equation 6--32 do not satisfy condition 6—31 for con-
fined flow. Thus it would seem possible to distinguish between confined
flow and not confined flow partly on the basis of the measured values of

nand m, but such a method of determining the flow type is probably not
wholly reliable.

>
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If condition 6—31 does indeed define confined flow, then equations 6—29 ,
applied to the data for semiconfined and unconfined flow, should give
results in disagreement with the results from other texts. For unconfined
flow this conclusion is certainly born out, as inspection of the relevant
data in table 6—2 will show immediately. For semiconfined flow this dis-
agreement is less striking, especially in view of the poor agreement for
confined flow itself, The analysis of semiconfined flow which follows will
yield stronger evidence for the validity of condition 631 as a definition of
confined flow.

6.3.5 — Semiconfined flow

Data relevant to the evaluation of the theory for semiconfined flow are
tabulated in table 6—3. Only two cases of semiconfined flow are available.
Data for some of the cases of confined flow and of unconfined flow are in-
cluded in connection with the evaluation of the criteria for semlconfmed
flow.

(a) Subsidiary conditions for semzconf' ned (and unconfined) flow

In addition to the principal conditions for the flow types (conditions 6—25
and 6-26) a number of subsidiary conditions must be satisfied if the
equations involving n and m for semiconfined and unconfined flow are to be
applicable.

Condition 6—13a states:

S, >> 8, *5, 6—33a
This condition is probably satisfied for all the cases of semiconfined and
unconfined flow, as inspection of the data for Sy: S, and S, in table 5—2
will show.
Condition 6—13b states:

K, D, <<K,D, 6—-33b
No data for K, are available, but this condition is probably easily satisfied
for all the cases that are treated.
Condition 6—13c states that flow in layer 3 is negligible if:

wS,>>(1+wS ¢, )V (wS,'K,") 6-33c

Some data for layer 3 are only available for the case of the upper aquifer at
Cap Pele. The data given in table 5—2 give (layer 3 for the upper aquifer is
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the same as layer 1 for the lower aquifer):

wS

, = (.015) (12.14)

I

1

0.18 day™
6 4
(1+wS,c,) V(wS,'’K,") =(1+0)V (12.14x2x107 x3x107 )

5 1
=85x10" day”

Thus at least for this case condition 6—33c (or 6—13c) is easily satisfied,
For the other cases it will be assumed that condition 6—33c holds, although
there is some doubt as to the validity of this assumption, especially for the
case of Prunjepolder 5, where layer 3 may be fairly permeable.

Condition 6—13d relates to the vertical potential gradients in the aquifers,
It states: '

(S,¢, )/ (1+(wS,c)?) <1 6—33d

The quantity (wS, c,)*/ (1 + w?*S *c'?) is tabulated in column 4 of table
6—3. It turns out that condition 6—33d is satisfied for all cases except that

of the upper aquifer at Cap Pele. The special problem of the unconfined

flow in this water table aquifer will be discussed in connection with the
analysis of the theory for unconfined flow. For the cases of semiconfined flow
condition 6—33d gives no difficulties.

(b} The equations for n and m

Equations 6—14 relating n and m to the geohydrological properties of the
formations for the case of semiconfined flow can be written:

Y —
(Slc1/3+S2c)/K2D2 =2nm/w 6—34a
K.D, ¢ =(n*—m?)" 6—34b
20, € —m”) -

Here again the right hand sides of these equations involve only data on the
propagation of periodic fluctuations, and are independent of frequency.
The results for the quantities (S ¢, /3 +8,¢)/K,D, and K D, as cal-
culated by equations 6—34 are tabulated in columns 5 and 7 of table 6—3.
For the semiconfined flow cases these values agree well with the values
calculated from other tests, as tabulated in columns 6 and 8.

Not enough data are available for a thorough check, but it would seem that
equations 6—34 (or 6—16) may well be reliable.
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{c) The criteria for semiconfined flow. -

Since equations 6—34 give results for the geohydrological properties of the
formations in good agreement with the results of other tests, these results
for periodic flow will also be consistent with figures by which the flow type
was decided, as given in table 6—1.

If conditions 6—25 do indeed delimit the cases of semiconfined flow, then
equations 6—34 applied to data for confined or unconfined flow should give
results in disagreement with those of other tests. The relevant data for
checking this conclusion are given in table 63,

For confined flow the quantity K,D, ¢’ calculated with equation 6—34b
shows clear disagreement with the results of other tests. This discrepancy
might be expected, for in fact equation 6—32 for confined flow can be
written:

1
K,D,c, =V (w8 ¢, /2) (n*—m?) 6-35

For nearly all cases of confined and semiconfined flow ¢, = ¢'. For each
case of confined flow the quantity K. D, ¢’ calculated by equation 6—34b
is in fact too small by a factor approximately equal ’to\/(ooS1 ¢,/2). This
result confirms the conclusion that confined flow is defined by the
condition that wS, ¢, be much greater than one.
For unconfined flow the value of (wS, ¢, [3+wS, c')/K2 D, calculated
with equation 6—34a is far too large, as inspection of the figures in columns
5 and 6 of table 63 shows. It may be concluded that the criteria for semi-
confined flow are also valid as a distinction between semiconfined and un-
confined flow.

\

6.3.6 — Unconfined flow

Data relevant to the evaluation of the equations and conditions for
unconfined flow are given in table 6—4. As before data for other flow types
are included as part of the empirical check on the criteria for unconfined
flow.

(a) The subsidiary conditions

In addition to the conditions for unconfined flow (conditions 6-26) several
subsidiary conditions must be satisfied if equations 6—18 for n and m in the
case of unconfined flow are to be applicable. These are the same subsidiary
conditions as for semiconfined flow, and have been discussed in the previous
section on semiconfined flow. Condition 6—13d concerning the importance
of vertical potential gradients within the aquifer was found not to be satisfied
for the case of the upper (water table) aquifer at Cap Pele. For the moment
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however the analysis of the equations for n and m will be continued as if
condition 6—13d gave no difficulty. Analysis of the data for the vertical
potential gradients in the aquifer at Cap Pele will show that condition
6—13d is in fact satisfied because the assumption that ¢, = 3¢’ and c, =0
is not valid.

(b) The equations for nand m

Equations 6—18 relating n and m to the geohydrological properties of the
formations for unconfined flow can be written:

S ¢ = n"—m” 6—36a
0 w 2nm

'’ n®—m?
K2D2C = m 6"'36b

where as before the right hand sides of these equations are independent of
frequency, and involve only the data on the propagation of periodic com-
ponents.

In columns 4 and 6 of table 6—4 the values of S_c’ and K,D, ¢’ are given

as calculated from the measured values of n and m through equatlons

6—36. I columns 5 and 7 the same quantities are tabulated as calculated
from the results of other tests.

For the unconfined flow cases the value of K,D ) ¢’ calculated with equation
6—-36b agrees well with the results of other tests, and would seem to exhibit
at least approx1mate1y the expected independence from frequency.

The results for S, ¢’ calculated with equation 6—34, show both a frequency
dependence and a disagreement with the results of other tests, the more
clearly so for the Cap Pele case. As has already been mentioned in chapter 5,
it seems likely that for fluctuations with durations of the order of a few days
or less, the value of S, may be considered as increasing with the duration of
the flow. The results for Cap Pele bear out this conclusion, since the
fluctuation with the longer duration yields a larger value of S, ¢’. For the
much slower fluctuations at Olst the possible error in the results leaves open
the possibility that S, is constant and equal to the effective poros1ty

(about 0.2).

Disregarding for the moment the question of the conditions for equations
6—36, it would seem from these results that equations 6—36 may well be
reliable if the value of S, is considered to increase with decreasing
frequency.
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(c) Vertical potential gradients in the aquifer

Some empirical data are available on the vertical potential gradients within
the upper aquifer at Cap Pele, (see figures 5—7a and 5—7b). These allow an
evaluation of the theoretical prediction for the vertical gradients and a
reassessment of condition 6—13d involving the vertical gradients.

For unconfined flow the vertical potential distribution in the aquifer is given
by (equation 6—21):

gz(z) = gz(zz) { ] — wSO C2 (QJSO c' +l) (2_22)2 637
1+(wS,c'y*  2D,?

Divided into its real and imaginary parts, this equation indicates that from
the bottom to the top of the aquifer there should be a decrease of amplitude
and an increase in phase lag, The results for Cap Pele, given graphically in
figures 5—7, bear out this theoretical conclusion.

Through equation 6—37 the data for the amplitudes and the phase lags in
the bottom half and near the top of the aquifer can be analyzed to yield
values of S c, and S ¢’. The data of the piezometer at x = 44 m may not
be reliable because of the influence of boundary effects (this piezometer

is only about 50 m away from the sea, while \/(K D,c,) =140 m(see
condition 6—2b). For the piezometerat x =114 m, z' = (z z,)/D, =093,
the data yield, through equation 6—37:

semidiurnal component: Soc' = 0.12 day
S,¢, = 0.16 day
diurnal component: Soc' = 0.19 day
S,c, = 0.21 day

Agreement with the values of S, ¢’ calculated from the data for the hori-
zontal propagation of the fluctuations (0.13 and 0.25 day for the semi-
diurnal and the diurnal components respectively) is quite good. To this
extent the theory seems consistent.

The results for the vertical potential variations indicate another problem
however. With no covering aquitard ¢, should be zero, and then S, ¢ =
=8, (c, *+c,/3) should be equal to S ¢ /3. The results for S ¢’ and

S, ¢, given above do not agree with this conclusion, and seem to indicate
that for some reason ¢ , cannot be assumed to be zero. In fact they yield
¢, =(0.5 £ 0.1) c,. Essentially it has turned out that the observed
vertical potential gradients are not as large as expected.
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This result can be probably be interpreted as implying that there is an extra
resistance to the vertical flow of water near the water table, perhaps due to
the only partial saturation of the porous medium at the transition zone be-
tween the saturated and the unsaturated zones. The variation of S| with the
duration of the flow as mentioned in the previous section may well be related
to this result.

With the values of S ¢ and S_c_ determined from the observations on the
vertical potential variations, condition 6—13d, which was previously found
not to be satisfied, can be reassessed, It states:

1
(WS,¢,)*(1+w?S 2™ <1 : 638

With the values of S0 c, and S0 ¢’ found from the vertical gradients, the
quantity on the left hand side of condition 6—38 takes values of 1.2 and 0.7
for the semidiurnal and the diurnal components respectively. Thus condition
6—38 (or 6—13d) is fairly well satisfied for the case of the Cap Pele aquifer
and the application of equations 6—36 for n and m is probably legitimate.

d) The criteria for unconfined flow

As was already mentioned previously the conditions for unconfined flow
are perhaps not entirely satisfied for the case of the semidiurnal tidal
fluctuation in the water table aquifer at Cap Pele. In fact condition 6—26b
which states:

wS, ¢ (wS, ¢, /3+wS,¢)<< 1 ' 6-39

seems not to be satisfied, as the figures given in table 6—1 show. However,
the analysis of the data for periodic flow yield a lower value of S, ¢, in fact
low enough that condition 6—39 turns out to be satisfied. The cause of this
seeming contradiction lies in the fact that the value of S_ used in the initial
estimate for the left hand side of condition 639 was obtained from a pump
test of 1200 minute duration. The effective duration of the semidiurnal
component is much less than 1200 minutes, and consequently a lower

value of S| is applicable for this component.

If the criteria for unconfined flow are correct (conditions 6—26), then ap-
plication of equations 6—36 to the data for semiconfined and confined

flow should give results for the geohydrological characteristics of the for-
mations in disagreement with the results of other tests. The figures relevant
to a check of this conclusion are given in table 6—4.

For the case of confined flow the values of S_c’ and K,D ¢’ calculated with
equations 6—36 are obviously erroneous. For the case of seminconfined flow
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the values of S ¢’ obtained with equation 6—36a are probably too low and
the values of K_D_ ¢’ obtained with equation 6—36b are not clearly wrong
although they seem rather low.

These results confirm to some extent the conclusion arrived at in the

previous section with regard to the analysis of semiconfined flow, namely
that the criteria for distinguishing between semiconfined and unconfined flow
(conditions 6—25 and 6—26) are correct and can be applied to practical
situations. The distinction between unconfined and confined flow on this
basis of these criteria is certainly valid.

6.4 — Validity and applicability of the theory — a summary

At the beginning of this chapter the two major points of interest in the
present analysis were mentioned. These are the questions concerning the
validity of the theory and its application in practical situations, In the
previous section, concerned with the evaluation of the theory on the basis
of the empirical results, the question as to the validity of the theory was
treated explicitly. At the same time an implicit answer to the second
question (concerned with applicability) has been given because the treat-
ment of the theoretical and the empirical results gives in effect a variety of
examples as to how the theory may be applied to actual situations. In
essence therefore the present section consists of a review and summary of
the results obtained in the previous sections.

Section 6.2 of this chapter gives a concise review of the theory for the
propagation of periodic fluctuations as developed in chapters 2 and 3. This
section has been included partly because it may be useful to the reader

who desires a quick overall view of the theoretical results before going on
to their application.

As shown in section 6.3.2 the horizontal potential distributions encountered
in practice may be expected to agree with equations 62 or 6—4 if .
disturbing effects due to the source of the fluctuations or to large-scale
changes in the geohydrological properties of the formations are negligible.
This result implies that the horizontal propagation parameters n and m

are unambiguously defined and can be used for further analysis. It also
implies that even where further analysis of n and m is not possible or
required, equations 6—2 and 6—4 have predictive value in themselves,

and may be useful for cases where the hydraulic potentials must be calculated
or predicted. .

The determination of the flow type by means of conditions 6—24, 625,
and 6—26 as described in section 6.3.3 is an essential element of the theory.
The results of further analysis show that these condjtions do indeed give
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a valid and useful method of distinguishing between flow types. The
definitions of the flow types as given in chapter 3 were as follows: the flow
is confined if it is isolated from the water table; the flow is semiconfined if
it is influenced by the position of the water table but the water table does
not move significantly; the flow is unconfined if it is wholly determined by
the position of the water table. The flow type must be determined on the
basis of data obtained from independent tests, The results of analysis of the
data for periodic flow can be used to check the figures by means of which
the flow was decided, but cannot for most cases be used to give a reliable
determination of the flow type.

Again it is emphasized that the use of quantitative criteria for determining
the flow type and selecting the appropiate equations for the ﬂow isan es-
sential element of the theory that has been developed.

The equations relating the horizontal propagation parameters n and m to
the geohydrological properties of the formations are only applicable if
various subsidiary conditions summarized in the review of the theory, are
also satisfied. It may happen that data required to check whether these
conditions hold are not available, or that in any case it is doubtful whether
they are satisfied. For cases where there is a reasonable probability that these
subsidiary conditions are at least roughly satisfied, the best approach is
probably to carry on with the analysis bearing in mind the possibility that
the results may err. In some cases the nature of the results may indicate the
extent of the error. This is essentially the approach used in this chapter.
Equations 6—9, or 629, describing the horizontal propagation of a
sinusoidal fluctuation for the case of confined flow, have been evaluated on
the basis of the empirical results from a number of different sites with dif-
ferent frequencies. It turns out that equation 6—9a, or 6—29a, may be re-
liable, but that equation 6—9b, or 6—29b, does not give good results and

is probably not reliable. However, the empirical results indicate that
equation 6—11b, or 6—30b, gives good results for all the cases of confined
flow that have been treated, and may well be generally applicable for
confined flow,

Only two empirical cases were available by which equations 6—14, or
6—34, for semiconfined flow, could be evaluated. For these two cases
analysis based on equations 634 gave good results, which indicates that
equations 6—14, or 6—34 may well be reliable,

Equations 6—18, or 636, describe the horizontal propagation of a
sinusoidal fluctuation for the case of unconfined flow. Evaluation of these
equations on the basis of empirical results indicates that equation 6—36b is
probably fairly reliable, but that equation 6—36a can only be considered as
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reliable if the storage at the water table may be assumed to increase with the
period of the flow.

Obsérvations on the vertical variation of potential within the aquifer for un-
confined flow have been analyzed with equaticn 621 (or 6—37). The re-
sults indicate that the vertical potential differences are smaller than was
expected on the basis of measurements of the horizontal propagation of the
fluctuations. It seems that there is an extra resistance to vertical flow near
the water table, an empirical result which may well be related to the variation
of the storage at the water table, as mentioned above.

On the whole than it may be concluded that except for some special pro-.
blems of confined and unconfined flow the theory that has been developed
is at least fairly reliable, and may be applied with some confidence in ap-
propriate situations.






SUMMARY

The purpose of the present work is twofold: firstly, to develop a comprehensive
theory for the propagation of periodic fluctuations of groundwater potential,
and secondly, to evaluate this theory and illustrate its application by means of
empirical results. from a number of different sites.

The theory, as presented in chapters 2 and 3, is based on Darcy’s law and a

linear proportionality between changes of storage and changes of hydraulic
potential. It is found that for thin aquifers and points sufficiently far away from
the boundaries a special solution applies, independent of the potentials at the
boundaries except that they are periodic in time. Explicit expressions of this
solution for various cases of confined, semiconfined and unconfined flow are
given, including equations for the horizontal propagation of the waves and the
vertical potential distributions in the aquifers and aquitards. The ranges of ap-
plicability of the various equations are defined in terms of quantitative criteria.
Through this systematic approach equations for special cases of periodic flow
previously obtained by other authors are integrated in a more general

theory.

In chapter 4 methods of analyzing and predicting periodic motions are discussed,
including the computation of sinusoidal components, the elimination of tidal
effects from water level records, and the problem of well response. Some of these
methods may well be useful, even in situations where application of the theory
for the propagation of the fluctuations is not possible or necessary.

In chapter 5 empirical data from various sites in the Netherlands and Canada are
presented. These include data for the propagation of periodic fluctuations due to
tidal motions or changes in river stage, and data on the geohydrological
characteristics of the formations obtained by pump testing and like methods.
Chapter 6 starts out with a summary of some of the more significant theoretical
results. These results for confined, semiconfined and unconfined flow, including
the criteria for the applicability of the various equations, are then compared with
the empirical results. It turns out that the given criteria do indeed provide a
meaningful and useful method of distinguishing flow types and establishing the
applicability of particular equations. The equations for wave propagation under
confined flow conditions are at best only partially applicable to actual situations,
but an empirical relationship is found which can probably be used instead. The
equations for semiconfined flow may well be generally applicable. For unconfined
flow the equations for horizontal wave propagation may be valid if the coefficient
of storage at the water table can be considered to increase with the period of the
fluctuation. The predicted vertical potential distribution within the aquifer for
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unconfined flow agrees with the measured potentials if it can be assumed that
there is an extra resistance to flow near the water table.

The comparison of the theoretical and the empirical results indicate at least two
problems which require further investigation. For confined flow there is a
discrepancy between theory and observation which might perhaps be resolved

if the assumption of homogeneity of the aquitards is dropped. For unconfined
flow the present theory does not give entirely adequate account of the flow and
storage at the water table,

In general it may be said that the theoretical approach that has been used,
namely that of obtaining both equations for various flow conditions and criteria
for their applicability from one general model, is of value both for the evaluation
of the equations, and for their application to practical problems.



EPILOGUE

It seems good to conclude with the words of an early Dutch engineer
and hydrologist, well-known for his work in the drainage of polders, whose
attitudes, though expressed in an older language, are valid as ever.

*“Hier mede wil ik mijn schrijven afkorten/ en zo ik hier inne wat ge-
mist mochte hebben/ het welke niet zo wel getroffen is/ als in’t bedijken
wel bevonden kan worden/ dat bid ik U. E. Heeren mij 't zelve ten beste
ende ten goede te houden/ en zo ik nog iets goets hebbe/ het welke tot
profijt en voordeel van deze dijkazie ende gemeene lands welvaart zoude
mogen dienen en trekken/ dat zelve wil ik tot allen tijde mede deelen/
en dienen met de gaven die mij den Heere gegeeven heeft.”

(“Herewith I will end my writings, and if I have missed ought herein
which is not so well hit, as may be found during the diking, then I pray
you noble sirs not to hold the same against me, and if I have yet some-
thing of value which might serve for the profit of this diking project and
for the welfare of the commonwealth, the same I am ready to communicate
at all times, and serve with the gifts that the Lord has given me.”)

From: ‘“Haarlemmer — meer — boek™
Jan Adriaanz Leeghwater, 1643



APPENDIX — FREQUENTLY USED SYMBOLS

Dimensions of the entities symbolized are denoted in terms of the symbols L

for length, T for time, and 0 for dimensionless.

g = Dj/Kj', vertical hydraulic resistance of layer “§”
2 .

c=c + c2/ 3

Dj =, ~% thickness of layer “j

f = f(x,t), horizontal potential distribution (complex)

g = gj(z), vertical potential distribution in layer “j” (complex)
hj = gj(z)f(x,t), hydraulic potential in layer “j” (complex)

Kj horizontal hydraulic conductivity of layer “j”

Kj' vertical hydraulic conductivity of layer “j”’

m phase change per unit horizontal distance
n change of natural logarithm of the amplitude per unit horizontal distance
p = n+ im, horizontal propagation parameter (complex)

s

qj vertical propagation parameter for layer “j
Sj' specific (elastic) storage coefficient of layer “j”

Sj = Sj'Dj; storage coefficient of layer ““”

S0 specific yield, or coefficient of storage at the water table
t time

T,, time lag constant of a well or piezometer

x horizontal distance coordinate

z vertical distance coordinate

z, average height of the water table
zj height of top of layer “j+1”

w angular frequency

c 0

S Tl o
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